русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Модели сетевого планирования и управления


Дата добавления: 2013-12-24; просмотров: 2596; Нарушение авторских прав


Задача о выборе оборудования.

Целочисленное программирование

 

Задачи оптимизации, в которых переменные принимают целочисленные значения, относятся к целочисленному программированию. Обозначим некоторые из таких задач.

Задача отличается от задачи линейного программирования только условием целочисленности, поскольку численность оборудования не может выражаться дробным числом.

Задача о ранце. Общий вес ранца заранее ограничен. Какие предметы положить в ранец, чтобы общая полезность отобранных предметов была максимальна? Вес каждого предмета известен.

С точки зрения экономики предприятия и организации производства более актуальна интерпретация задачи о ранце, в которой в качестве “предметов” рассматриваются заказы (или варианты выпуска партий тех или иных товаров), в качестве полезности – прибыль от выполнения того или иного заказа, а в качестве веса – себестоимость заказа.

В отличие от предыдущих задач, управляющие параметры принимают значения из множества, содержащего два элемента - 0 и 1(то есть заказ принят или нет).

К целочисленному программированию относятся задачи размещения (производственных объектов), теории расписаний, календарного и оперативного планирования, назначения персонала и т.д.

В качестве наиболее распространенных методов решения задач целочисленного программирования можно назвать: метод приближения непрерывными задачами и метод направленного перебора.

 

 

Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-математическая модель, отражающая комплекс работ (операций) и событий, связанных с реализа­цией некоторого проекта (научно-исследовательского, про­изводственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, пред­ставленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и, во-вторых, определить наиболее опти­мальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ. Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений, что оправдывает рассмот­рение этого типа моделей в данной главе.



Математический аппарат сетевых моделей базируется на теории графов. Графом называется совокупность двух ко­нечных множеств: множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т. е. на каждом ребре задается направле­ние, то граф называется ориентированным; в противном случае — неориентированным. Последовательность неповто­ряющихся ребер, ведущая от некоторой вершины к другой, образует путь. Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в про­тивном случае граф называется несвязным. В экономике чаще всего используются два вида графов: дерево и сеть. Дерево представляет собой связный граф без циклов, имею­щий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями. Сеть — это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».

В экономических исследованиях сетевые модели возни­кают при моделировании экономических процессов методами сетевого планирования и управления (СПУ).

Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, распола­гающих определенными ресурсами и выполняющих опреде­ленный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.

Основой СПУ является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы. Пример сетевого графика приведен ниже.

Ориентированный граф был бы полезен, например, для иллюстрации организации перевозок в транспортной задаче. В экономике дугам ориентированного или обычного графа часто приписывают числа, например, стоимость проезда или перевозки груза из пункта А (начальная вершина дуги) в пункт Б (конечная вершина дуги).

Некоторые, наиболее типичные задачи принятия решений, связанных с оптимизацией на графах.

 

Задача коммивояжера.

Задача коммивояжера. Требуется посетить все вершины графа и вернуться в исходную вершину, минимизировав затраты на проезд (или минимизировав время).

Исходные данные - это граф, дугам которого приписаны положительные числа - затраты на проезд или время, необходимое для продвижения из одной вершины в другую. В общем случае граф является ориентированным, и каждые две вершины соединяют две дуги - туда и обратно. Действительно, если пункт А расположен на горе, а пункт Б - в низине, то время на проезд из А в Б, очевидно, меньше времени на обратный проезд из Б в А.

Многие постановки экономического содержания сводятся к задаче коммивояжера. Например:

- составить наиболее выгодный маршрут обхода наладчика в цехе (контролера, охранника, милиционера), отвечающего за должное функционирование заданного множества объектов (каждый из этих объектов моделируется вершиной графа);

- составить наиболее выгодный маршрут доставки деталей рабочим или хлеба с хлебозавода по заданному числу булочных и других торговых точек (парковка у хлебозавода).

 



<== предыдущая лекция | следующая лекция ==>
Общий вид распределительной матрицы | Регрессионный и корреляционный анализ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.