Подграфом графа G (ориентированного графа D) называется граф, все вершины и ребра которого содержатся среди вершин и ребер графа G (D).
Подграф называется собственным, если он отличен от самого графа.
Говорят, что вершина w ориентированного графа D (графа G) достижима из вершины v, если либо w=v, либо существует путь (маршрут) из v в w.
Граф (ориентированный граф) называется связным (сильно связным), если для любых двух его вершин v, w существует маршрут (путь), соединяющий v и w.
Компонентой связности графа G (сильной связности ориентированного графа D) называется его связный (сильно связный) подграф, не являющийся собственным подграфом никакого другого связного (сильно связного) подграфа графа G (ориентированного графа D).
Матрицы достижимости и связности
Пусть A(D) – матрица смежности ориентированного псевдографа D=(V,X) (или псевдографа G=(V,X)), где V={v1,…, vn}. Обозначим через Ak=[a(k)ij] k-ю степень матрицы смежности A(D).
Элемент a(k)ij матрицы Ak ориентированного псевдографа D=(V,X) (псевдографа G=(V,X)) равен числу всех путей (маршрутов) длины k из vi в vj.
Матрица достижимости ориентированного графа D − квадратная матрица T(D)=[tij] порядка n, элементы которой равны
Матрица сильной связности ориентированного графа D − квадратная матрица S(D)=[sij] порядка n, элементы которой равны
Матрица связности графа G − квадратная матрица S(G)=[sij] порядка n, элементы которой равны
Пусть G=(V,X) – граф, V={v1,…, vn}, A(G) – его матрица смежности. Тогда
S(G)=sign[E+A+A2+A3+… An-1] (E- единичная матрица порядка n).
Утверждение 3.Пусть D=(V,X) – ориентированный граф, V={v1,…, vn}, A(D) – его матрица смежности. Тогда