русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Определенный интеграл, его свойства и геометрический смысл


Дата добавления: 2013-12-24; просмотров: 4011; Нарушение авторских прав


Пусть функция определена на отрезке Произведем разбиение (см. Р5)

отрезка на частичные отрезки и выберем произвольно точки Вычислим значения

и составим так называемую интегральную сумму

Определение 3.Если существует конечный предел интегральных сумм:

и если этот предел не зависит от вида разбиения и выбора точек то его называют определенным интегралом от функции на отрезке Обозначение:При этом саму функцию называют интегрируемой на отрезке

(заметим, что число называется диаметром разбиения ).

Пусть теперь функция По разбиению строится ступенчатая фигура (см. Р6), состоящая из прямоугольников высоты и длиной основания, равной Площадь этой ступенчатой фигуры (достройте ее самостоятельно) равна интегральной сумме и эта площадь будет приближенно равна площади криволинейной трапеции[3] т.е. причем это равенство будет тем точнее, чем меньше диаметр разбиения и оно становится точным при

Мы пришли к следующему геометрическому смыслу определенного интеграла:

интегралчисленно равен площади криволинейной трапеции с верхней границей, описываемой уравнением

Замечание 3. В определении 3 интеграла предполагается, что отрезок интегрирования ориентирован от до(т.е. ). В случае противоположной ориентации отрезка

(т.е. при ) полагаем по определению Также полагаем по определению, что

Перейдем к формулировке свойств определенного интеграла.

Ограниченность подынтегральной функции.Если функция интегрируема на отрезке то она ограничена на этом отрезке (т.е. ).

Линейность интеграла.Если функции и интегрируемы на отрезке то на этом отрезке интегрируема и любая их линейная комбинация и имеет место равенство

Аддитивность интеграла.Если функция интегрируема на максимальном из отрезков то она интегрируема и на двух других отрезках, причем имеет место равенство



Далее везде предполагаем, что

Монотонность интеграла.Если функции и интегрируемы на отрезке и то

Интегрируемость модуля.Если функции интегрируема на отрезке то на этом отрезке интегрируема и функция причем имеет место неравенство

Теорема о среднем для интеграла.Пусть функция непрерывна на отрезке Тогда существует точка такая, что (геометрический смысл этой теоремы состоит в том, что существует прямоугольник с основаниеми высоты равновеликий криволинейной трапеции ).

Доказательство.Пусть (по теореме Вейерштрасса значения и функцией достигаются). Имеем поэтому из свойства монотонности интеграла отсюда получаем

Последние неравенства показывают, что значение является промежуточным для функции на отрезке а, значит, по теореме Больцано-Коши существует такое, что

Теорема доказана.

Лекция 6. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле. Интегрирование дробно-рациональных функций

Вычисление определенного интеграла можно свести к вычислению неопределенного. Соответствующая формула носит название формулы Ньютона-Лейбница. Для ее вывода необходимо изучить сначала свойства интеграла с переменным верхним пределом, к описанию которого мы переходим.

 



<== предыдущая лекция | следующая лекция ==>
Замена переменной в неопределенном интеграле | Интеграл с переменным верхним пределом


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.328 сек.