русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Выпуклость, вогнутость, точки перегиба


Дата добавления: 2013-12-24; просмотров: 1013; Нарушение авторских прав


Пусть функция дифференцируема в точке Тогда в точке она имеет касательную, каждая точка удовлетворяет уравнению

Определение 3.Говорят, что кривая выпукла вверх в точке если существует такое, что в окрестности кривая находится

ниже своей касательной (3) в точке т.е. если Если же

то кривая называется выпуклой вниз в точке (часто говорят, о выпуклости или вогнутости в точке ). Говорят, что кривая выпукла вверх (выпукла вниз) на интервале если она выпукла вверх (выпукла вниз) в каждой точке этого интервала.

На рисунке Р.2 функция выпукла вверх в точкеа на Р.3 – выпукла вниз.

Теорема 3.Пусть функция дважды дифференцируема на интервале . Тогда справедливы высказывания:

1. если то кривая выпукла вверх на

2. если то кривая выпукла вниз на

Доказательство.Пусть произвольная точка интервала Окружим её отрезком Так как функция удовлетворяет на этом отрезке всем условиям теоремы Тейлора с остаточным членом в форме Лагранжа, то для всех имеет место представление

С другой стороны, в точке функция имеет касательную с уравнением .Значит, Отсюда видно, что если (тогда и ), то значит,

кривая выпукла вверх в точке Если жето то значит, кривая выпукла вниз в точке Теорема доказана.

Определение 4.Точка называется точкой перегиба кривой если:а) дифференцируема в точке ; б) кривая при переходе через точку изменяет направление выпуклости (это равносильно тому, что разностьизменяет знак при переходе через точку).

Необходимое условие точки перегиба.Если - точка перегиба и если существут то

Доказательствовытекает из локальной формулы Тейлора и из равенства

 

Замечание 4.К точкам, подозрительным на “перегиб”, следует отнести, прежде всего, точки , для которыхОднако “перегиб” может иметь место и в точках, в которых вторая производная не существует или равна Например, в точке функция имеет производную И в этой точке эта функция имеет “перегиб”. Очевиден следующий результат.



Теорема 4 (достаточное условие точки перегиба).Пусть функциядифференцируема в точкеи некоторой её окрестности и дважды дифференцируема в некоторой проколотой окрестности этой точки. Тогда если при переходе через точку вторая производная изменяет знак, то точка перегиба кривой

 



<== предыдущая лекция | следующая лекция ==>
Локальный экстремум | Исследование функций с помощью высших производных


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.109 сек.