русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Непрерывность функции в точке


Дата добавления: 2013-12-24; просмотров: 1461; Нарушение авторских прав


Односторонние пределы

Лекция 2. Односторонние пределы функции в точке. Непрерывность функции. Разрывные функции и классификация точек разрыва. Производная функции, ее геометрический и физический смысл. Производная сложной функции. Таблица производных

Дадим их кратко.

Определение 1. Левый предел функции в точке (обозначение: ):

Правый предел функциив точке (обозначение: ): Очевидно следующее свойство:

Для существования обычного предела необходимо и достаточно, чтобы существовали односторонние пределы и чтобы имело место равенство

 

Пусть функция определена в точке и некоторой ее окрестности.

Определение 2. Функция называется непрерывной в точке если

т.е. если

Функция называется непрерывной слева (справа) в точке если (соответственно ).

Функция называется непрерывной на множестве если она непрерывна в каждой точке этого множества.

Очевидны следующие высказывания.

(непрерывна в точке )

Для того чтобы функция была непрерывна в точке необходимо и достаточно, чтобы она была непрерывна слева и справа в точке

Нетрудно показать, что сумма, разность и произведение двух функций, непрерывных в точке также являются непрерывными в этой точке функциями. Частное двух непрерывных в точке функций непрерывно в этой точке, если

С непрерывными функциями связаны следующие два важных утверждения.

Теорема 1. Пусть сложная функция определена в некоторой проколотой окрестности точки и пусть выполнены условия:

а) существует

б) функция непрерывна в точке

Тогда существует предел и имеет место равенство

Теорема 2. Пусть сложная функция определена в точке и некоторой ее окрестности и пусть выполнены условия:

а) функция непрерывна в точке ,

б) функция непрерывна в соответствующей точке



Тогда сложная функция непрерывна в точке

Теорему 1 называют теоремой о переходе к пределу под знаком непрерывной функции, а теорему 2– теоремой о непрерывности сложной функции.

 

Пример 1. Найти предел

Решение. Так как существует а функция непрерывна в точке то по теореме 1 имеем

Определение 3.Функции вида

называются простейшими элементарными функциями. Всякая функция, полученная из простейших элементарных функций путем применения к ним конечного числа операций сложения, вычитания, умножения, деления и взятия функций от функций (т.е. образования сложных функций) называется элементарной функцией (общего вида).

Имеет место следующая замечательная теорема.

Теорема 3. Всякая элементарная функция непрерывна в любой внутренней точке своей области определения .

Напомним, что точка называется внутренней точкой множестваесли она входит в вместе с некоторой своей окрестностью

Например, функция непрерывна на множестве так как это множество является областью определения функции и все точки этого множества – внутренние.

Если хотя бы одно из условий определения 2 не выполнено, то функция является

разрывной в точке . Различают два типа разрывов:

Точка– точка разрыва I рода: а) существуюти конечные односторонние пределы но либо они не совпадают, либо хотя бы один из них не равен значению ;

б) существуют конечные односторонние пределы но не определена в точке

Точка– точка разрыва II рода: либо не существует хотя бы один из односторонних пределов либо хотя бы один из них равен бесконечности.

Например, точка точка разрыва I рода для функций

а для функции она является точкой разрыва II рода.

Если то прямая вертикальная асимптота для функцииПрямая называется наклонной (горизонтальной при ) асимптотой функции, если Нетрудно показать, что если существуют конечные пределы

то прямая асимптота кривой Таким образом, асимптоты функции

могут возникнуть при подходе к точкам разрыва второго рода этой функции либо на бесконечности.

 



<== предыдущая лекция | следующая лекция ==>
Бесконечно большие функции и их связь с бесконечно малыми | Производная функции в точке, ее геометрический и механический смысл


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.286 сек.