Это отношение может быть истинным для одних значений из области интепретации и ложным для других.
При такой интерпретации выделяют три класса формул, тождественно истинные, тождественно ложные и выполнимые.
Тождественно истинные формулы (или тавтологии) -это особый класс формул исчисления предикатов, которые принимают значение “истины” для всех интерпретаций входящих в нее предметных постоянных, функциональных и предикатных символов; эти формулы играют роль законов и аксиом исчисления предикатов; любые подстановки и замещения в тождественно истинной формуле не изменяют ее значения.
для предиката P2(x, y):=”число x меньше числа y” формула "x$y(P2(x, y)):=”для любого целого числа x найдется число y, большее числа x” является тождественно истинной;
для любой F(x) формула $x(F(x))«ù"x(ùF(x)):=“формула ”существуют x, для которых F(x)=и”, эквивалентна формуле “не для всех x F(x)=л”” является тождественно истинной.
Тождественно ложные формулы (или противоречие)-это особый класс формул исчисления предикатов, которые принимают значение “ложь” для всех интерпретаций входящих в нее предметных постоянных, функциональных и предикатных символов; любые подстановки и замещения в тождественно ложной формуле не изменяют ее значения.
Например, для предиката P2(x, y):=”число x меньше числа y” формула $x"y(P2(x, y)):=”существует целое число x, которое меньше любого целого числа y” является тождественно ложной;
$x(F(x))&"x(ùF(x)):=”“существует x, для которой F(x)=и”, и “для всех x F(x)=л ”” является тождественно ложной.
Выполнимые формулы - это особый класс формул исчисления предикатов, которые принимают значение “истина”в некоторой области, т.е. не для всех интерпретаций входящих в нее предметных постоянных, функциональных и предикатных символов.
Например, формула $x(F(x))®ù"x(F(x)) является истинной для одного элемента множества V и ложной для всех элементов этого множества, т.к.
$x(F(x))®ù"x(F(x)):=” если существует x, для которого F(x)=и, то не для всех х универсума F(x)=и” .
F1;F2;¼Fn|¾ B, где слева от знака “|¾” записывают множество формул посылок и необходимые аксиомы F1;F2;¼Fn, а справа – формулу заключения B. Тогда знак “|¾” означает “верно, что B выводима из F1;F2;¼Fn.