Особо следует рассмотреть влияние свободных переменных на интерпретацию формул исчисления предикатов.
При заданной интерпретации предметные переменные рассматриваются как переменные, пробегающие область универсума V, а символам логических и кванторных операций придается их обычный смысл.
Интерпретация формул
Все методы и результаты исчисления высказываний можно перенести на исчисление предикатов, т. е. каждая теорема и любой вывод исчисления высказываний становятся теоремой и выводом исчисления предикатов, если пропозициональные переменные заменить формулами языка предикатов, причем все вхождения одной и той же переменной везде заменить одной и той же формулой. Каждая схема теоремы и каждая схема вывода также сохраняются, если под знаками пропозициональных переменных принимать формулы языка предикатов.
Исчисление предикатов
Для того, чтобы формализовать процесс рассуждения в исчислении предикатов, необходимо выделить класс формул, определяющих их эквивалентные преобразования при наличии кванторов, и класс отношений между формулами формирующих последовательную цепь формул от посылок до заключения. Следует отметить, что правила, аксиомы и законы исчисления высказываний есть подмножество правил, аксиом и законов исчисления предикатов. Дополнительные правила, аксиомы и законы определяют возможности введения и удаления кванторов, подстановки и cмeны кванторов
Под интерпретацией следует понимать систему, состоящую из непустого множества V, называемом универсумом, и однозначного отображения на двухэлементное множество {и; л}, которое каждому предикатному символу Pn (t1; t2;¼ tn ) ставит в соответствие n - местное отношение на множестве V, каждому функциональному символу f ni (t1; t2;¼ tn ) - n-местную операцию на множестве V, каждой предметной постоянной - элемент множества V.
Другими словами, интерпретация функциональных символов определяется по значениям функции на универсуме, заданном на множестве термов, входящих аргументами в эту функцию, а интерпретация предикатных символов по отображению на двухэлементное множество {и; л}.
Формула, не содержащая свободных переменных, называется замкнутой и представляет собой высказывание об элементах, функциях и отношениях, которое принимает значение и или л.