русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Аксиомы исчисления высказываний


Дата добавления: 2013-12-24; просмотров: 927; Нарушение авторских прав


Любая формула исчисления высказываний может рассматриваться как формула алгебры высказываний и, следовательно, можно рассматривать ее логические значения на различных наборах значений входящих в нее пропозициональных переменных по таблицам истинности.

Поиск алгоритма, определяющего к какому классу принадлежит та или иная формула, формирует проблему разрешимости исчисления высказываний.

Пример: Определить, к какому классу относятся формулы: a) F = ((A®B)&(A®C)®(A®(B&C))

A B C A®B A®C B&C 4&5 1®6 7®8
Л Л Л И И Л И И И
Л Л И И И Л И И И
Л И Л И И Л И И И
Л И И И И И И И И
И Л Л Л Л Л Л Л И
И Л И Л И Л Л Л И
И И Л И Л Л Л Л И
И И И И И И И И И

 

Формула принадлежит классу тож­дественно истинных формул (см. столбец 9).

Недостаток использования таблиц истинности состоит в том, что при большом числе пропозициональных переменных сама процедура построения этих таблиц становится громоздкой, так как число строк этой таблицы равно 2n , где n - число пропозициональных перемен­ных формулы, а число столбцов не меньше (n+m), где m – число логических связок в формуле.

Пример: В семье есть договоренность относительно пользования телевизором на субботние вечера: а) если не смотрит отец(ùА), то смотрит дочь (C) и не смотрит мать (ùВ), т.е. F1=(ùА®C&ù В);

б) если не смотрит дочь (ù C), то смотрит мать (В) и не смотрит отец (ùА), т.е. F2=(ù C®B&ù A);



в) если смотрит отец (A), то не смотрит дочь (ùC), т.е. F3=( A®ù C). В каком случае совместимы эти условия?

Формальная запись этого суждения имеет вид:

F=F1&F2&F3=(ùА®C&ùВ)&(ùC®B&ùA)&(A®ùC).

 

A B C 3&ù2 ù1®4 2&ù1 ù3®6 1®ù3 5&7&8
Л Л Л Л Л Л Л И Л
Л Л И И И Л И И И
Л И Л Л Л И И И Л
Л И И Л Л И И И Л
И Л Л Л И Л Л И Л
И Л И И И Л И Л Л
И И Л Л И Л Л И Л
И И И Л И Л И Л Л

Анализ таблицы показывает (см. столбец 9), что эти условия совместимы (см. строку 2), когда А=л, В=л и С=и (см. строку 2).  

 

Как уже отмечалось множество формул, удовлетворяющих условиям тождественной истинности, бесконечно. Однако в качестве аксиом всегда выбирают только такие, которые при истинности посылок обеспечивают дедуктивный вывод истинности заключения. При этом стремятся создать такую систему аксиом, которая содержала бы минимальное число формул для заданного набора логических связок. Так известна система, которая для логических связок импликации и отрицания содержит только три аксиомы, а для логических связок импликации и дизъюнкции только пять аксиом. Для полного набора логических связок: импликация, отрицание, конъюнкция и дизъюнкция система содержит десять аксиом. В силу полноты систем, использующих логические связки а) импликации и отрицания, б) импликации и дизъюнкции, в) импликации, отрицания, конъюнкции и дизъюнкции можно использовать в процессе дедуктивного вывода любую из указанных систем.

Ниже приведена одна из систем аксиом:

А1. F1®(F2®F1);

А2. (F1®F2)®((F2®F3))®(F1®F3));

А3. (F1& F2)®F1;

А4. (F1& F2)®F2;

А5. F1®(F2®(F1&F2));

А6. F1®(F1ÚF2);

А7. F2®(F1ÚF2);

А8. (F1®F3)®((F2®F3)®((F1ÚF2)®F3));

А9. (F1®F2)®(( F1®ù F2)®ù F1);

A10. (F1®F2)®((F1&F3)®(F2&F3));

A11. (F1® F2)®((F1ÚF3)®(F2ÚF3));

А12. ùù F1 ® F1.

Для проверки тождественной истинности аксиом рассмотрим таблицы истинности для A2 и A8:

А2. (F1® F2)®(( F1®( F2® F3))®( F1® F3))

F1 F2 F3 1®2 1®3 2®3 1®6 7®5 4®8
л л л и и и и и и
л л и и и и и и и
л и л и и л и и и
л и и и и и и и и
и л л л л и и л и
и л и л и и и и и
и и л и л л л и и
и и и и и и и и и

 

А8. (F1® F3)®(( F2 ® F3)®(( F1 Ú F2)® F3))

 

F1 F2 F3 1Ú 2 1®3 2®3 4®3 6®7 5®8
л л л л и и и и и
л л и л и и и и и
л и л и и л л и и
л и и и и и и и и
и л л и л и л л и
и л и и и и и и и
и и л и л л л и и
и и и и и и и и и

 



<== предыдущая лекция | следующая лекция ==>
Интерпретация формул | Правила введения и удаления логических связок


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.