русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Линейная независимость собственных векторов, отвечающих различным собственным значениям.


Дата добавления: 2013-12-24; просмотров: 11406; Нарушение авторских прав


Теорема.Пусть собственные значения оператора различны. Тогда отвечающие им собственные векторы линейно независимы.

Доказательство проведем методом математической индукции по количеству векторов. Для одного собственного вектора утверждение теоремы очевидно. Предположим, что утверждение теоремы верно для векторов . Добавим к этим векторам еще один вектор . Предположим, что эта система из векторов линейно зависима, т.е. существуют числа , одновременно не равные нулю, такие, что

. (*)

Применим к обеим частям равенства оператор :

.

Так как векторы - собственные, отвечающие различным собственным значениям , то:

. (**)

Вычтем из равенства (**) равенство (*), умноженное на :

.

Так как все числа различны, то из линейной независимости векторов следует равенство нулю коэффициентов . Но тогда из равенства (*) следует, что . Это означает, что векторы линейно независимы. Теорема доказана.

Следствие.Если характеристический многочлен линейного оператора имеет различных корней, то существует базис, в котором матрица этого оператора имеет диагональный вид.

Действительно, если характеристический многочлен оператора имеет ровно различных корней, то оператор имеет различных собственных значений. Этим собственным значениям соответствуют собственных векторов, причем они линейно независимы. Возьмем их в качестве базисных. Очевидно, в таком базисе матрица оператора будет диагональной, и на диагонали будут стоять собственные значения оператора.

 

 



<== предыдущая лекция | следующая лекция ==>
Собственные значения и собственные векторы линейного оператора. | Прикладные механизмы


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.242 сек.