русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Вероятностные методы. Метод Монте-Карло


Дата добавления: 2013-12-23; просмотров: 1517; Нарушение авторских прав


Раздел № 9

В отличие от традиционных численных методов реше­ния задач, заключающихся в разработке алгоритма пост­роения решения, для исследования некоторых классов задач оказывается более целесообразным моделирование их сущности с использованием законов больших чисел теории вероятностей. Оценки f1, f2, ... , fn искомой ве­личины f в этом случае строят на основании статистичес­кой обработки материала, полученного в результате многократных случайных испытаний. Основным требо­ванием при этом является сходимость по вероятности рассматриваемой случайной величины к искомому реше­нию задачи:

(9.1)

Здесь Р – вероятность, ε – сколь угодно малое поло­жительное число.

В отличие от численных методов, описанных ранее, в данном случае вычислительный процесс является неде­терминированным. Такой подход к решению вычисли­тельных задач получил общее название метода Монте-Карло. При практической реализации данного подхода случайные величины заменяют сериями, так называемых псевдослучайных величин, генерируемых соответствую­щими стандартными программами.

 

9.1. Вычисление определенного интеграла

Пусть задана непрерывная случайная величина ξ (кси), с плотностью вероятности р(х), значения которой распре­делены на интервале (а, b)

Плотность вероятности р(х) обладает следующими свойствами:

 

1) p(x) ³ 0;

2) . (9.2)

 

Тогда математическое ожидание случайной величины ξ равно интегралу

M(ξ) = . (χ – хи)

Для функции f(ξ), аргументом которой является слу­чайная величина ξ, т. е. для случайной функции, матема­тическое ожидание равно

M(f((ξ)) =. (9.3)

Отсюда следует, что любой интеграл вида

где функция р(х) обладает свойствами (9.2), можно при­нять за математическое ожидание некоторой случайной функции f(ξ).



Но математическое ожидание случайной величины f(ξ) можно приближенно определить с помощью статистичес­ких оценок, т. е. на основе выборки {ξ1, ξ2,..., ξN} объема N как среднее арифметическое значений {f(ξ1), f(ξ2),..., f(ξN)} поэтому интеграл (9.3) можно вычислить прибли­женно по формуле

» (9.4)

Теоретическим основанием для такого перехода явля­ется центральная предельная теорема теории вероятно­стей, которая в упрощенной формулировке утверждает следующее.

Среднее арифметическое N испытаний случайной ве­личины ξ

ξN =

 

является случайной величиной с тем же математическим ожиданием

M(ξN) = М(ξ)

и дисперсией, равной

D(ξN) =

и при N ® ¥ закон распределения слу­чайной величины ξN стремится к нормальному закону.

Очевидно, что чем больше N, тем меньше дисперсия D(ξN) = . Величину погрешности формулы (9.4)можно оценить по вероятности. Например, при боль­ших N можно утверждать, что с вероятностью 0,997 ошибка не превосходит величину 3σ = 3×(прави­ло «трех сигм» для нормально распределенной случайной величины).

Можно считать, что погрешность формулы (9.4) есть величина порядка O, но для повышения точности в данном случае нельзя применять правило Рунге-Ромберга.

Приведем другой способ статистической оценки для одномерного интеграла

.

Для этого вспомним его геометрический смысл. Предпо­ложим, что функция f(x) положительна на отрезке [a, b]. Тогда интеграл равен площади криволинейной трапеции, ограниченной графиком функции f(x), осью абсцисс и прямыми х = а и х = b (рис. 9.1).

Рассмотрим две случайные величины ξ – равномерно распределенную на отрезке [а, b] и η (эта) – равномерно рас­пределенную на отрезке [0, fmax] где fmax = .

Рис. 9.1

Вероятность попадания случайной точки (ξ, η) в криво­линейную трапецию равна отношению площади трапеции к площади прямоугольника

{(х, у), a £ х £ b, 0 £ у £ fmax }:

(9.5)

 

Проведем серию из N испытаний и получим N случай­ных точек (х, у), принадлежащих прямоугольной области {a £ х £ b, 0 £ у £ fmax }. Подсчитаем число Nf точек, удов­летворяющих условию у £ f(x). Тогда вероятность попада­ния случайной точки (ξ, η) в криволинейную трапецию приближенно равна относительной частоте попадания в криволинейную трапецию, т. е. р » и интеграл приближенно вычисляется по формуле

» (9.6)

Другой, более простой способ вычисления интеграла заключается в следующем.

Проведем серию из N испытаний случайной величины, равномерно распределенной на отрезке [а, b], и полу­чим N случайных чисел xi, принадлежащих отрезку [а, b]. Вычислим интеграл по формуле

» (9.7)

Отметим, что в (9.7) подынтегральная функция может принимать положительные и отрицательные значения, тогда как формула (9.6) применима только для неотрица­тельной функции f(x).

В общем случае, когда пределы интегрирования могут быть бесконечными, необходимо преобразовать интеграл к виду

(9.8)

и применить формулу (9.7).



<== предыдущая лекция | следующая лекция ==>
Разностный метод для уравнения колебаний мембраны | Вычисление кратных интегралов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.436 сек.