русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

II. Отделения корней программным способом.


Дата добавления: 2013-12-23; просмотров: 2175; Нарушение авторских прав


I. Графический способ отделения корней

Отделение корней

Отделение корней может осуществляться графически или программным путем.

а) Теорема.

Если на отрезке [a,b] функция y=F(x) определена и непрерывна, и на его концах принимает значения разных знаков (т.е. F(a)F(b)<0), то уравнение F(x)=0 имеет на этом отрезке, по крайней мере, один корень.

 

 
 

 

 


Если функция y=F(x) на отрезке [a,b] строго монотонна, то корень единственный.

 

 

 


Требуется указать отрезок, содержащий нуль функции.

Например, пусть требуется отделить корни уравнения x2-x-1=0. Построим график функции y=x2-x-1 и укажем отрезки, содержащие точки пересечения графика функции с осью абсцисс.

Искомые промежутки: [-1; 0] [1; 2].

 

б) Иногда проще рассмотреть вместо уравнения y=F(x) равносильное ему уравнение f1(x)=f2(x). В этом случае требуется указать отрезок, содержащий абсциссу точки пересечения графиков функций y=f1(x) и y=f2(x).

Например, пусть требуется отделить корни уравнения x2-x-1=0. Рассмотрим равносильное ему уравнение x2=x+1. Тогда вместо отрезков, содержащих точки пересечения графика функции y=x2-x-1 с осью абсцисс, можно указать отрезки, содержащие точки пересечения графиков функций f1(x)=x2 и f2(x)=x+1.

Искомые промежутки: [-2; 0] [1; 3].

Пусть имеется уравнение F(x)=0, причем все корни находятся на отрезке [a,b]. Будем вычислять все значения функции y=F(x), начиная с точки x=a, двигаясь вправо шагом h. Если функция на отрезке длины h меняет знак (т.е. F(a)F(b)<0) и монотонна, можно считать, что на этом отрезке ровно 1 корень.

 


Правильность нахождения отрезков, содержащих один корень, зависит от характера функции y=F(x) и от величины шага h. При выборе шага должна соблюдаться «золотая середина», т.к. шаг h должен быть с одной стороны достаточно малым, чтобы не произошло потери корней, а с другой стороны не настолько маленьким, чтобы число отрезков не было слишком большим.



 

 

Блок-схема отделения корней:
 

 

Программа отделения корней:

program otd_korn;

var x1,x2,a,b,h:real;

function f(x: real):real;

begin {записать, функцию в виде f:=[математическое выражение]} f:=x*x*x-x+4;

end;

begin

write('Введите левую границу отрезка - a: ');readln(a);

write('Введите правую границу отрезка - b: ');readln(b);

write('Введите шаг - h:'); readln(h);

x1:=a; x2:=x1+h;

while x2<b do

begin

if f(x1)*f(x2)<0

then writeln('[ ',x1:6:2,' , ',x2:6:2,' ]');

x1:=x2; x2:=x1+h;

end;

readln;

end.



<== предыдущая лекция | следующая лекция ==>
Постановка задачи | Метод хорд


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.