В интеллектуальных системах используются четыре основных типа моделей знаний:
1. Логические модели. В основе моделей такого типа лежит формальная система, задаваемая четверкой вида M = <T, S, A, B>. Множество T есть множество базовых элементов, например слов из некоторого словаря, или деталей из некоторого набора. Для множества T существует некоторый способ определения принадлежности или непринадлежности произвольного элемента к данному множеству. Процедура такой проверки может быть любой, но она должна давать ответ на вопрос, является ли x элементом множества T за конечное число шагов. Обозначим эту процедуру P(T).
Множество S есть множество синтаксических правил. С их помощью из элементов T образуют синтаксически правильные совокупности. Например, из слов словаря строятся синтаксически правильные фразы, а из деталей собираются конструкции. Существует некоторая процедура P(S), с помощью которой за конечное число шагов можно получить ответ на вопрос, является ли совокупность X синтаксически правильной.
Во множестве синтаксически правильных совокупностей выделяется некоторое подмножество A. Элементы A называются аксиомами. Как и для других составляющих формальной системы, должна существовать процедура P(A) , с помощью которой для любой синтаксически правильной совокупности можно получить ответ на вопрос о принадлежности ее к множеству A.
Множество B есть множество правил вывода. Применяя их к элементам A, можно получать новые синтаксически правильные совокупности, к которым снова можно применять правила из B. Так формируется множество выводимых в данной формальной системе совокупностей. Если имеется процедура P(B), с помощью которой можно определить для любой синтаксически правильной совокупности, является ли она выводимой, то соответствующая формальная система называется разрешимой. Это показывает, что именно правила вывода являются наиболее сложной составляющей формальной системы.
Для знаний, входящих в базу знаний, можно считать, что множество A образуют все информационные единицы, которые введены в базу знаний извне, а с помощью правил вывода из них выводятся новые производные знания. Другими словами, формальная система представляет собой генератор порождения новых знаний, образующих множество выводимых в данной системе знаний. Это свойство логических моделей позволяет хранить в базе лишь те знания, которые образуют множество A, а все остальные знания получать из них по правилам вывода.
2. Сетевые модели. Сетевые модели формально можно описать в виде H = <I, C1, C2,…, Cn, G). Здесь I есть множество информационных единиц; C1, C2,…, Cn - множество типов связей между ними. Отображение G задает связи из заданного набора типов связей между информационными единицами, входящими в I.
В зависимости от типов связей, используемых в модели, различают классифицирующие сети, функциональные сети и сценарии, нейронные сети. В классифицирующих сетях используются отношения структуризации. Такие сети позволяют в базах вводить иерархические отношения между информационными единицами. Функциональные сети характеризуются наличием функциональных отношений. Их часто называют вычислительными моделями, так как они позволяют описывать процедуры «вычислений» одних информационных единиц через другие. Нейронные сети можно отнести к классу функциональных сетей, однако нечёткие продукционные нейронные сети представляют собой гибридную модель, соединяющую в себе черты логической, продукционной и сетевой моделей. В сценариях используются каузальные отношения, а также отношения типа «средство – результат». Если в сетевой модели допускаются связи различного типа, то ее называют семантической сетью.
3.Продукционные модели. В моделях этого типа используются некоторые элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода, которые здесь называются продукциями, а из сетевых моделей – описание знаний в виде семантической сети. В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов. Таким образом, в продукционных моделях процедурная информация явно выделена и описывается иными средствами, чем декларативная информация. Вместо логического вывода, характерного для логических моделей, в продукционных моделях появляется вывод на знаниях. Продукционная модель или модель, основанная на правилах, позволяет представить знания в виде предложений типа «Если (условие), то (действие)». Под условием понимается некоторое предложение — образец, по которому осуществляется поиск в базе знаний, а под действием — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия, и терминальными или целевыми, завершающими работу системы). При использовании продукционной модели база знаний состоит из набора правил, Программа, управляющая перебором правил, называется машиной вывода. Чаще всего вывод бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения – к данным). Данные — это исходные факты, на основании которых запускается машина вывода. Если в памяти системы хранится некоторый набор продукций, то они образуют систему продукций. В системе продукций должны быть заданы специальные процедуры управления продукциями, с помощью которых происходит актуализация продукций и выполнение той или иной продукции из числа актуализированных.
4.Фреймовые модели. В отличие от моделей других типов во фреймовых моделях фиксируется жесткая структура информационных единиц, которая называется протофреймом. В общем виде она выглядит следующим образом:
(Имя фрейма:
Имя слота 1 (значение слота 1)
Имя слота 2 (значение слота 2)
. . . . . . . . . . . . . .
Имя слота К (значение слота К)).
Значением слота может быть все, что угодно: числа, математические соотношения, тексты на естественном языке, программы, правила вывода, ссылки на другие слоты данного фрейма или других фреймов. В качестве значения слота может выступать набор слотов более низкого уровня, что позволяет реализовать во фреймовых представлениях «принцип матрешки».
При конкретизации фрейма ему и слотам присваиваются имена, и происходит заполнение слотов. Таким образом, из протофреймов получаются фреймы-экземпляры. Переход от исходного протофрейма к фрейму-экземпляру может быть многошаговым, за счет постепенного уточнения значений слотов. Связи между фреймами задаются значениями специального слота с именем «Связь». Некоторые специалисты по ИС не выделяют фреймовые модели в отдельный класс, так как в ней объединены все основные особенности моделей остальных типов.