русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Характеристики знаний.


Дата добавления: 2013-12-23; просмотров: 1351; Нарушение авторских прав


Адаптивные системы

Адаптивные системы должны удовлетворять ряду требований:

· адекватно отражать знания проблемной области в каждый момент времени;

· быть пригодными для легкой и быстрой реконструкции при изменениях проблемной среды.

Ядром систем данного класса является модель проблемной области, поддерживаемая в специальной БЗ – репозитории. Ядро системы управляет процессами генерации или переконфигурирования программного обеспечения. При разработке адаптивных систем используется типовое или оригинальное проектирование.

Реализация оригинального проектирования основана на использовании CASE- технологий (Designer2000, SilverRun, Natural Light Strom и др.).

При типовом проектировании осуществляется адаптация типовых разработок к особенностям проблемной области. При этом используются инструментальные средства компонентного (сборочного) проектирования (R/3, BAAN, Prodis и др.).

При использовании CASE- технологий при изменении проблемной области каждый раз применяется генерация программного обеспечения, а при использовании сборочной технологии – конфигурирование программ или их переработка.

Основной проблемой, решаемой во всех системах ИИ, является проблема представления знаний. Информация представляется в компьютере в процедурной и декларативной форме. В процедурной форме представлены программы, в декларативной – данные. В системах искусственного интеллекта возникла концепция новой формы представления информации – знания, которая объединила в себе черты как процедурной, так и декларативной информации. Перечислим основные характеристики знаний:

1. Внутренняя интерпретируемость. Каждая информационная единица должна иметь уникальное имя, по которому система находит ее, а также отвечает на запросы, в которых это имя упомянуто. Данные в памяти лишены имен и могут идентифицироваться только программой, извлекающей их из памяти. При переходе к знаниям в память вводится информация о некоторой протоструктуре информационных единиц и словари имен данных. Каждая единица информации будет экземпляром протоструктуры. СУБД обеспечивают реализацию внутренней интерпретируемости информации, хранимой в базе данных.



2. Структурированность. Информационные единицы должны соответствовать «принципу матрешки», то есть рекурсивной вложенности одних информационных единиц в другие. Другими словами, должна существовать возможность произвольного установления между отдельными информационными единицами отношений типа «часть – целое», «род – вид» или «элемент – класс».

3. Связность. Между информационными единицами должна быть предусмотрена возможность установления связей различного типа, характеризующих отношения между информационными единицами. Семантика отношений может носить как декларативный характер, например, в отношениях «одновременно» и «причина – следствие», так и процедурный характер, например, в отношении «аргумент – функция». Все отношения можно разделить на четыре категории: отношения структуризации (задают иерархию информационных единиц), функциональные отношения (несут процедурную информацию, позволяющую вычислять одни информационные единицы через другие), каузальные отношения (задают причинно-следственные связи) и семантические отношения (все остальные отношения).

4. Семантическая метрика. Между информационными единицами задают отношения релевантности, которые характеризуют ситуационную близость информационных единиц, то есть силу ассоциативной связи между информационными единицами (например, «покупка» или «регулирование движения на перекрестке»).Отношение релевантности позволяет находить знания, близкие к найденным ранее знаниям.

5. Активность. Выполнение программ в информационных системах должно инициализироваться не командами, а состоянием информационной базы, например, появлением в базе фактов или описаний событий или установление связей между информационными единицами.

Перечисленные характеристики определяют разницу между данными и знаниями, при этом базы данных перерастают в базы знаний.



<== предыдущая лекция | следующая лекция ==>
Самообучающиеся системы | Модели представления знаний.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.