Адаптивные системы должны удовлетворять ряду требований:
· адекватно отражать знания проблемной области в каждый момент времени;
· быть пригодными для легкой и быстрой реконструкции при изменениях проблемной среды.
Ядром систем данного класса является модель проблемной области, поддерживаемая в специальной БЗ – репозитории. Ядро системы управляет процессами генерации или переконфигурирования программного обеспечения. При разработке адаптивных систем используется типовое или оригинальное проектирование.
Реализация оригинального проектирования основана на использовании CASE- технологий (Designer2000, SilverRun, Natural Light Strom и др.).
При типовом проектировании осуществляется адаптация типовых разработок к особенностям проблемной области. При этом используются инструментальные средства компонентного (сборочного) проектирования (R/3, BAAN, Prodis и др.).
При использовании CASE- технологий при изменении проблемной области каждый раз применяется генерация программного обеспечения, а при использовании сборочной технологии – конфигурирование программ или их переработка.
Основной проблемой, решаемой во всех системах ИИ, является проблема представления знаний. Информация представляется в компьютере в процедурной и декларативной форме. В процедурной форме представлены программы, в декларативной – данные. В системах искусственного интеллекта возникла концепция новой формы представления информации – знания, которая объединила в себе черты как процедурной, так и декларативной информации. Перечислим основные характеристики знаний:
1. Внутренняя интерпретируемость. Каждая информационная единица должна иметь уникальное имя, по которому система находит ее, а также отвечает на запросы, в которых это имя упомянуто. Данные в памяти лишены имен и могут идентифицироваться только программой, извлекающей их из памяти. При переходе к знаниям в память вводится информация о некоторой протоструктуре информационных единиц и словари имен данных. Каждая единица информации будет экземпляром протоструктуры. СУБД обеспечивают реализацию внутренней интерпретируемости информации, хранимой в базе данных.
2. Структурированность. Информационные единицы должны соответствовать «принципу матрешки», то есть рекурсивной вложенности одних информационных единиц в другие. Другими словами, должна существовать возможность произвольного установления между отдельными информационными единицами отношений типа «часть – целое», «род – вид» или «элемент – класс».
3. Связность. Между информационными единицами должна быть предусмотрена возможность установления связей различного типа, характеризующих отношения между информационными единицами. Семантика отношений может носить как декларативный характер, например, в отношениях «одновременно» и «причина – следствие», так и процедурный характер, например, в отношении «аргумент – функция». Все отношения можно разделить на четыре категории: отношения структуризации (задают иерархию информационных единиц), функциональные отношения (несут процедурную информацию, позволяющую вычислять одни информационные единицы через другие), каузальные отношения (задают причинно-следственные связи) и семантические отношения (все остальные отношения).
4. Семантическая метрика. Между информационными единицами задают отношения релевантности, которые характеризуют ситуационную близость информационных единиц, то есть силу ассоциативной связи между информационными единицами (например, «покупка» или «регулирование движения на перекрестке»).Отношение релевантности позволяет находить знания, близкие к найденным ранее знаниям.
5. Активность. Выполнение программ в информационных системах должно инициализироваться не командами, а состоянием информационной базы, например, появлением в базе фактов или описаний событий или установление связей между информационными единицами.
Перечисленные характеристики определяют разницу между данными и знаниями, при этом базы данных перерастают в базы знаний.