русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Регрессионный анализ


Дата добавления: 2013-12-23; просмотров: 937; Нарушение авторских прав


Регрессионный анализ используется для изучения взаимосвязи между двумя величинами, измеренными в интервальной шкале. Этот вид анализа предусматривает построение регрессионного уравнения, позволяющего количественно описать зависимость одного признака от другого (коэффициент корреляции Пирсона указывает на наличие или отсутствие связи, но эту связь не описывает). Зная случайную величину одного из признаков и используя данное уравнение, исследователь может с определенной степенью вероятности предсказать соответствующее значение второго признака. Линейная зависимость признаков описывается уравнением следующего типа:

у = а + by * x ,

где а - свободный член уравнения, равный подъему графика в точке х=0 относительно оси абсцисс, b – угловой коэффициент наклона линии регрессии равный тангенсу угла наклона графика к оси абсцисс (при условии, что масштаб значений на обеих осях одинаков).

Зная значения исследуемых признаков, можно определить величину свободного члена и коэффициента регрессии по следующим формулам:

а = My – by * Mx

В нашем случае: ;

а = 58,3 – 0,97 * 166,6 = -103,3

Таким образом, формула зависимости веса от роста выглядит следующим образом:
у = 0,969 * х – 103,3

Соответствующий график приведен ниже.

Если необходимо описать зависимость роста от веса (х от у), то значения а и b становятся другими и формулы необходимо соответствующим образом модифицировать:

 

x = а + bx * у

а = Mx – bx * My

Изменяется в таком случае и вид графика. Это задание студентам будет предложено выполнить самостоятельно.

Коэффициент регрессии находится в тесной связи с коэффициентом корреляции. Последний представляет собой среднее геометрическое из коэффициентов регрессии признаков:

Квадрат коэффициента корреляции называется коэффициентом детерминации. Его величина определяет процентное взаимное влияние переменных. В нашем случае
R2 = 0,762 = 0,58. Это значит, что 58 % общей дисперсии Y объясняется влиянием переменной X, остальные 42 % обусловлены влиянием неучтенных в уравнении факторов.





<== предыдущая лекция | следующая лекция ==>
Уровень значимости корреляции | Вычисление ранговой корреляции по Спирмену


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.