русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Алгоритм Гаусса


Дата добавления: 2013-12-23; просмотров: 1653; Нарушение авторских прав


Рассмотрим сейчас алгоритм Гаусса, позволяющий найти решение всех интересующих нас задач - вычислить определитель матрицы, решить m систем линейных уравнений, найти обратную матрицу. Построим вначале расширенную матрицу , состоящую из двух клеток:

Матрица , дополняющая матрицу , зависит от того, какую задачу предполагается решить. Если нужно вычислить только определитель матрицы , то расширенная матрица совпадает с исходной и матрица в этом случае отсутствует. Если нужно решить одну систему линейных уравнений, то матрица состоит из одного столбца - правых частей системы уравнений. Если нужно решить m систем уравнений, то матрица состоит из векторов, каждый из которых задает правые части своей системы уравнений. Если нужно найти обратную матрицу, то матрица задается единичной матрицей .

После того, как построена расширенная матрица, вся специфика конкретной задачи теряется - над расширенной матрицей выполняются одни и те же действия с параллельным вычислением определителя матрицы . В чем суть этих действий? Над матрицей последовательно выполняются элементарные преобразования - деление элементов строки на число, что изменяет величину определителя, и вычитание из одной строки матрицы другой строки, умноженной на некоторое число. Цель наших действий состоит в том, чтобы в расширенной матрице клетку преобразовать в единичную матрицу . Поскольку каждое элементарное действие можно рассматривать, как умножение слева на некоторую матрицу, совокупность преобразований, переводящая в , эквивалентна умножению слева на матрицу . Но это означает также, что эти преобразования переводят клетку в матрицу , что и дает решение исходных задач. Поскольку в результате преобразования переходит в единичную матрицу, определитель которой известен и равен 1, а для каждого преобразования известно, как меняется величина определителя, параллельно вычисляется и величина определителя исходной матрицы .



Рассмотрим на простом примере матричный вид элементарных операций. Пусть элементарная операция состоит в том, что к первой строке прибавляется вторая строка, умноженная на число . Это действие эквивалентно умножению почти единичной матрицы на исходную матрицу:

Матрица, задающая элементарную операцию, отличается от единичной матрицы тем, что у нее в первой строке на втором месте стоит число q, а не ноль. Если бы к первой строке прибавлялась не вторая строка, а строка с номером j, то число q стояло бы не на втором месте, а в позиции j. Если строка j прибавляется не к первой строке, а к строке с номером i, то число q появлялось бы в i-ой строке матрицы.

Рассмотрим теперь возможную реализацию алгоритма Гаусса:

public void Gauss(double[,] M) { det = 1; int n = M.GetLength(0); int m = M.GetLength(1); double d =0,r=0; for (int i = 0; i < n; i++) { //Приведение столбца i к единичному вектору d = M[i, i]; det *= d; //деление на диагональный элемент: M[i,i]теперь = 1; for (int k = 0; k < m; k++) M[i, k] /= d; //Элементарная операция: сложение строк for (int j=0; j<n; j++) { //К строке j прибавляется строка i, умноженная на r //В результате M[j,i]=0 if(j!=i) { r=-M[j,i]; for (int k = 0; k < m; k++) M[j, k] += r * M[i, k]; } } }

Аргументом метода является расширенная матрица . В результате работы метода матрица приобретает вид: . В зависимости от того, как задана матрица B, находится решение одной системы уравнений, нескольких систем или вычисляется значение обратной матрицы. Параллельно в переменной det формируется значение определителя матрицы A.

Алгоритм Гаусса в том виде, как он выше рассмотрен, не всегда обеспечивает получение результата. Действительно, пусть в матрице А элемент a[1,1] равен нулю. Тогда при выполнении элементарных операций в процессе преобразования матрицы А к единичной матрице Е возникнет ошибка уже на первом шаге при делении первой строки на элемент a[1,1]. Однако равенство нулю диагонального элемента вовсе не означает, что определитель матрицы равен нулю (если речь не идет о диагональной матрице) или что для нее не существует обратной матрицы.

Возможны различные модификации рассматриваемого алгоритма, исправляющие ситуацию.

Алгоритм с выбором первого ненулевого элемента

В случае, когда а[i, i] равно нулю, алгоритм ищет первую строку ниже i-й, в которой элемент a[i, j] не равен нулю. Эта строка добавляется к строке i, что гарантирует возможность деления на а[i, i].

Алгоритм с выбором главного элемента в столбце

Прежде чем приводить столбец к единичному виду, алгоритм ищет в столбце максимальный по модулю элемент и меняет местами строку i и строку j, в которой находится максимальный элемент. При обмене строк может измениться знак определителя матрицы.

Алгоритм с выбором главного элемента во всей матрице

На каждом шаге приведения очередного столбца к диагональному виду в еще не приведенной матрице отыскивается максимальный элемент и меняются местами не только строки, но и столбцы матрицы, ставя максимальный элемент в позицию а[i, i]. Этот прием гарантирует отсутствие переполнения при выполнении операции деления. Гарантируется также, что при умножениях не будет получено слишком большое число, поскольку деление на максимальный элемент с последующим умножением на один из элементов приводит к тому, что элементы преобразованной матрицы не увеличиваются по модулю. Однако ничто не дается даром. Выбор главного элемента, перестановка строк и столбцов, необходимость обратной перестановки в конце вычислений - все это усложняет алгоритм. Как правило, страдает и точность вычислений, особенно для плохо обусловленных матриц. Все модификации алгоритма стоит применять тогда, когда в основной схеме возникла исключительная ситуация, требующая корректировки алгоритма. Обработчик исключительной ситуации при делении на ноль, возникновении переполнения, потере значащих цифр может вызывать модифицированный вариант алгоритма в надежде получить решение, когда отказывается работать основная схема.

Замечу, что никакая модификация не может помочь найти обратную матрицу, если она не существует и определитель матрицы действительно равен нулю. В этом случае, например, все элементы в столбце, начиная с диагонального и ниже его, будут равны нулю. Это и будет означать, что определитель матрицы равен нулю, обратная матрица и решение системы уравнений не существует.



<== предыдущая лекция | следующая лекция ==>
Системы линейных уравнений | Интерполяционный полином, определитель Вандермонда и обусловленность матриц


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.