русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Сложение и умножение полиномов


Дата добавления: 2013-12-23; просмотров: 4791; Нарушение авторских прав


При рассмотрении полинома Лагранжа возникала необходимость в нахождении суммы полиномов одинаковой степени, заданных своими коэффициентами. Пусть P(x) и Q(x) - полиномы степени n и m, соответственно, заданные своими коэффициентами, и пусть для определенности . Тогда суммой полиномов называется полином R(x) степени n, коэффициенты которого вычисляются следующим образом:

Пусть полиномы P(x) и Q(x) заданы, подобно полиному Лагранжа, точками, через которые они проходят:

Тогда нетрудно найти подобное представление и для полинома R(x), представляющего сумму полиномов:

В этом случае понадобится вычислить значения полинома Q(x) в n точках.

Если полиномы P(x) и Q(x) заданы своими корнями, то определить корни полинома суммы не удается, более того, у суммы вообще может не быть корней. В этом случае для каждого полинома по корням можно вычислить коэффициенты, а затем определить коэффициенты полинома суммы. Можно также рассматривать корни как частный случай задания множества точек, через которые проходит полином, и применить предыдущую схему для определения множества точек, через которые проходит полином суммы.

Рассмотрим теперь операцию умножения полиномов:

Нетрудно понять, что полином S(x) является полиномом степени и имеет коэффициент. Как вычисляется произведение, если заданы полиномы сомножители P(x) и Q(x)? Замечу, что произведение полиномов часто встречается на практике и имеет специальное имя - свертка полиномов.

В отличие от сложения полиномов проще всего найти свертку, если заданы корни обоих полиномов. В этом случае никаких вычислений не требуется, поскольку n корней P(x) и m корней Q(x) будут корнями S(x). Если у полиномов P(x) и Q(x) есть совпадающие корни, то у S(x) появятся кратные корни.

Если исходные полиномы P(x) и Q(x) заданы своими точками, то нетрудно получить набор точек для полинома произведения. Схема во многом похожа на ту, что имеет место при сложении полиномов, заданных точками:



Для получения множества точек, задающих представление полинома S(x), приходится вычислять значение полинома Q(x) в n точках и значение полинома P(x) в m точках, а затем выполнять соответствующее умножение значений двух полиномов.

Если исходные полиномы P(x) и Q(x) заданы своими коэффициентами, то имеем:

Каждый член первой суммы приходится умножать на все члены второй суммы и затем приводить подобные члены при одинаковых степенях x. Нетрудно заметить, что в результате коэффициенты полинома S(x) определяются следующими соотношениями:

Суммирование идет по всем наборам k и r, дающим в сумме значение i. Понятно, что для крайних значений (i=0 и i=n+m) сумма состоит из одного члена, поскольку подобные члены для x в нулевой степени и степени n+m отсутствуют. Число членов суммирования увеличивается при приближении к середине интервала [0, n+m].



<== предыдущая лекция | следующая лекция ==>
Полином Лагранжа | Алгоритмы линейной алгебры


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.