Рис. Стохастический фрактал на основе множества Жюлиа
Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:
· траектория броуновского движения на плоскости и в пространстве;
· различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр.
Плазма — типичный представитель данного класса фракталов в компьютерной графике:
Рис. Плазма
Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число – тем более «рваным» будет рисунок. Если, например, сказать, что цвет точки это высота над уровнем моря, то получим вместо плазмы – горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму, строится карта высот, к ней применяются различные фильтры, накладываются текстуры:
Фрактальная монотипия, илистохатипия— направления в изобразительном искусстве, заключающиеся в получении изображения случайного фрактала:
4. Системы итерируемых функций (IFS – Iterated Function Systems)
Эта группа фракталов получила широкое распространение благодаря работам Майкла Барнсли из технологического института штата Джорджия. Он пытался кодировать изображения с помощью фракталов. Запатентовав несколько идей по кодированию изображений с помощью фракталов, он основал фирму «Iterated Systems», которая через некоторое время выпустила первый продукт «Images Incorporated», в котором можно было изображения переводить из растровой формы во фрактальную FIF.
Алгоритмы сжатия изображения с помощью фракталов основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой.
Конструктивный фрактал - это множество, получающееся в результате линейных (аффинных) сжимающих отображений подобия. Если в L–systems (алгебраических фракталах) речь шла о замене прямой линии неким полигоном, то в IFS мы в ходе каждой итерации заменяем некий полигон (квадрат, треугольник, круг) на набор полигонов, каждый их которых подвергнут аффинным преобразованиям. При аффинных преобразованиях исходное изображение меняет масштаб, параллельно переносится вдоль каждой из осей и вращается на некоторый угол.
Геометрической интерпретацией конструктивного фрактала может служить дерево, ствол которого разделен на две более мелкие ветви (рис.). В свою очередь, каждая из этих ветвей разделяется на две более мелкие ветви и т.д.
В уме мы можем проделать эту процедуру бесчисленное число раз и получить древовидный фрактал с бесконечным числом ветвей. Каждую отдельную ветвь можно, в свою очередь, рассматривать как отдельное дерево. Эта конструкция имеет сходство с двоичной системой счисления.
Один из вариантов данного алгоритма сжатия был использован фирмой Microsoft (при издании своей энциклопедии), но большого распространения эти алгоритмы не получили.
При низких степенях сжатия качество рисунков уступало качеству формата JPEG, но при высоких - картинки получались более качественными. В любом случае этот формат не прижился, но работы по его усовершенствованию ведутся до сих пор. Ведь этот формат не зависит от разрешения изображения. Так как изображение закодировано с помощью формул, то его можно увеличить до любых размеров и при этом будут появляться новые детали, а не просто увеличится размер пикселей.
Программы для работы с фрактальной графикой: Fracplanet 4.0, Art Dabbler, Ultra Fractal, Fractal Explorer, ChaosPro, Apophysis, Mystica
Форматы файлов: *.pov; *.frp; *.frs; *.fri; *.fro; *.fr3, *.fr4 и др. Визуализированные изображения также могут быть экспортированы в один из растровых графических форматов (jpg, bmp, png и psd), а готовые фрактальные анимации − в AVI-формат.
P.S. Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста:
· неразветвляющееся бесконечное дерево, тождественное само себе с любой итерации («У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…», «Ложно утверждение, что истинно утверждение, что ложно утверждение…»)
· неразветвляющиеся бесконечные тексты с вариациями («У Пегги был весёлый гусь…») и тексты с наращениями («Дом, который построил Джек»).
В структурных фракталах схема текста потенциально фрактальна:
· «рассказы в рассказе» («Книга тысячи и одной ночи», Я. Потоцкий «Рукопись, найденная в Сарагосе»)
· К. Прист «Лотерея» (иногда встречается под названием «Подтверждение»): молодой писатель сочиняет роман о своем двойнике из параллельного мира, который в свою очередь пишет книгу о своем двойнике из параллельной Вселенной, сочиняющем…
В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому: