русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Марковские случайные процессы с непрерывным временем


Дата добавления: 2013-12-23; просмотров: 1605; Нарушение авторских прав


Итак, снова модель марковского процесса представим в виде графа, в котором состояния (вершины) связаны между собой связями (переходами из i-го состояния в j-е состояние), см. рис. 33.10.

 

Рис. 33.10. Пример графа марковского процесса с непрерывным временем

Теперь каждый переход характеризуется плотностью вероятности перехода λij. По определению:

При этом плотность понимают как распределение вероятности во времени.

Переход из i-го состояния в j-е происходит в случайные моменты времени, которые определяются интенсивностью перехода λij.

К интенсивности переходов (здесь это понятие совпадает по смыслу с распределением плотности вероятности по времени t) переходят, когда процесс непрерывный, то есть, распределен во времени.

С интенсивностью потока (а переходы — это поток событий) мы уже научились работать в лекции 28. Зная интенсивность λij появления событий, порождаемых потоком, можно сымитировать случайный интервал между двумя событиями в этом потоке.

где τij — интервал времени между нахождением системы в i-ом и j-ом состоянии.

Далее, очевидно, система из любого i-го состояния может перейти в одно из нескольких состояний j, j + 1, j + 2, …, связанных с ним переходами λij, λij + 1, λij + 2, ….

В j-е состояние она перейдет через τij; в (j + 1)-е состояние она перейдет через τij + 1; в (j + 2)-е состояние она перейдет через τij + 2 и т. д.

Ясно, что система может перейти из i-го состояния только в одно из этих состояний, причем в то, переход в которое наступит раньше.

Поэтому из последовательности времен: τij, τij + 1, τij + 2 и т. д. надо выбрать минимальное и определить индекс j, указывающий, в какое именно состояние произойдет переход.

Пример. Моделирование работы станка. Промоделируем работу станка (см. рис. 33.10), который может находиться в следующих состояниях: S0 — станок исправен, свободен (простой); S1 — станок исправен, занят (обработка); S2 — станок исправен, замена инструмента (переналадка) λ02 < λ21; S3 — станок неисправен, идет ремонт λ13 < λ30.



Зададим значения параметров λ, используя экспериментальные данные, получаемые в производственных условиях: λ01 — поток на обработку (без переналадки); λ10 — поток обслуживания; λ13 — поток отказов оборудования; λ30 — поток восстановлений.

Реализация будет иметь следующий вид (см. рис. 33.11).

 

Рис. 33.11. Пример моделирования непрерывного марковского процесса с визуализацией на временной диаграмме (желтым цветом указаны запрещенные, синим — реализовавшиеся состояния)

В частности, из рис. 33.11 видно, что реализовавшаяся цепь выглядит так: S0S1S0—… Переходы произошли в следующие моменты времени: T0T1T2T3—…, где T0 = 0, T1 = τ01, T2 = τ01 + τ10.

Задача. Поскольку модель строят для того, чтобы на ней можно было решить задачу, ответ которой до этого был для нас совсем не очевиден (см. лекцию 01), то сформулируем такую задачу к данному примеру. Определить долю времени в течение суток, которую занимает простой станка (посчитать по рисунку) Tср = (T + T + T + T )/N.

Алгоритм имитации будет иметь следующий вид (см. рис. 33.12).

 

Рис. 33.12. Блок-схема алгоритма моделирования непрерывного марковского процесса на примере имитации работы станка

Очень часто аппарат марковских процессов используется при моделировании компьютерных игр, действий компьютерных героев.

33. Лекция 34.
Фиксация и обработка статистических
результатов

В лекции 21 мы подробно познакомились со схемой статистического компьютерного эксперимента. В лекциях 21—26 мы рассмотрели практическую реализацию всех основных блоков (см. рис. 21.3) этой схемы. Сейчас важно научиться организовывать работу последних двух блоков — блок вычисления статистических характеристик (БВСХ) и блок оценки достоверности статистических результатов (БОД).

Итак, рассмотрим, как следует фиксировать статистические величины в результате эксперимента, чтобы получить надежную информацию о свойствах моделируемого объекта. Напомним, что обобщенными характеристиками случайного процесса или явления являются средние величины.



<== предыдущая лекция | следующая лекция ==>
Марковский процесс с дискретным временем | Вычисление средних


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.