русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Биномиальное распределение


Дата добавления: 2013-12-23; просмотров: 837; Нарушение авторских прав


Пусть имеется некое событие A. Вероятность появления события A равна p, вероятность непоявления события A равна 1 – p, иногда ее обозначают как q. Пусть n — число испытаний, m — частота появления события A в этих n испытаниях.

Известно, что суммарная вероятность всех возможных комбинаций исходов равна единице, то есть:

1 = pn + n · pn – 1 · (1 – p) + Cnn – 2 · pn – 2 · (1 – p)2 + … + Cnm · pm · (1 – p)nm + … + (1 – p)n.

pn — вероятность того, что в n испытаниях событие A произойдет n раз; n · pn – 1 · (1 – p) — вероятность того, что в n испытаниях событие A произойдет (n – 1) раз и не произойдет 1 раз; Cnn – 2 · pn – 2 · (1 – p)2 — вероятность того, что в n испытаниях событие A произойдет (n – 2) раза и не произойдет 2 раза; Pm = Cnm · pm · (1 – p)nm — вероятность того, что в n испытаниях событие A произойдет m раз и не произойдет (nm) раз; (1 – p)n — вероятность того, что в n испытаниях событие A не произойдет ни разу; — число сочетаний из n по m.

 

Математическое ожидание M биномиального распределения равно:

M = n · p,

где n — число испытаний, p — вероятность появления события A.

Среднеквадратичное отклонение σ:

σ = sqrt(n · p · (1 – p)).

Пример 1. Вычислить вероятность того, что событие, имеющее вероятность p = 0.5, в n = 10 испытаниях произойдет m = 1 раз. Имеем: C101 = 10, и далее: P1 = 10 · 0.51 · (1 – 0.5)10 – 1 = 10 · 0.510 = 0.0098. Как видим, вероятность наступления этого события достаточно мала. Объясняется это, во-первых, тем, что абсолютно не ясно, произойдет ли событие или нет, поскольку вероятность равна 0.5 и шансы здесь «50 на 50»; а во-вторых, требуется исчислить то, что событие произойдет именно один раз (не больше и не меньше) из десяти.

Пример 2. Вычислить вероятность того, что событие, имеющее вероятность p = 0.5, в n = 10 испытаниях произойдет m = 2 раза. Имеем: C102 = 45, и далее: P2 = 45 · 0.52 · (1 – 0.5)10 – 2 = 45 · 0.510 = 0.044. Вероятность наступления этого события стала больше!



Пример 3. Увеличим вероятность наступления самого события. Сделаем его более вероятным. Вычислить вероятность того, что событие, имеющее вероятность p = 0.8, в n = 10 испытаниях произойдет m = 1 раз. Имеем: C101 = 10, и далее: P1 = 10 · 0.81 · (1 – 0.8)10 – 1 = 10 · 0.81 · 0.29 = 0.000004. Вероятность стала меньше, чем в первом примере! Ответ, на первый взгляд, кажется странным, но поскольку событие имеет достаточно большую вероятность, вряд ли оно произойдет только один раз. Более вероятно, что оно произойдет большее, чем один, количество раз. Действительно, подсчитывая P0, P1, P2, P3, …, P10 (вероятность того, что событие в n = 10 испытаниях произойдет 0, 1, 2, 3, …, 10 раз), мы увидим:

C100 = 1, C101 = 10, C102 = 45, C103 = 120, C104 = 210, C105 = 252,
C106 = 210, C107 = 120, C108 = 45, C109 = 10, C1010 = 1;

P0 = 1 · 0.80 · (1 – 0.8)10 – 0 = 1 · 1 · 0.210 = 0.0000…;
P1 = 10 · 0.81 · (1 – 0.8)10 – 1 = 10 · 0.81 · 0.29 = 0.0000…;
P2 = 45 · 0.82 · (1 – 0.8)10 – 2 = 45 · 0.82 · 0.28 = 0.0000…;
P3 = 120 · 0.83 · (1 – 0.8)10 – 3 = 120 · 0.83 · 0.27 = 0.0008…;
P4 = 210 · 0.84 · (1 – 0.8)10 – 4 = 210 · 0.84 · 0.26 = 0.0055…;
P5 = 252 · 0.85 · (1 – 0.8)10 – 5 = 252 · 0.85 · 0.25 = 0.0264…;
P6 = 210 · 0.86 · (1 – 0.8)10 – 6 = 210 · 0.86 · 0.24 = 0.0881…;
P7 = 120 · 0.87 · (1 – 0.8)10 – 7 = 120 · 0.87 · 0.23 = 0.2013…;
P8 = 45 · 0.88 · (1 – 0.8)10 – 8 = 45 · 0.88 · 0.22 = 0.3020… (самая большая вероятность!);
P9 = 10 · 0.89 · (1 – 0.8)10 – 9 = 10 · 0.89 · 0.21 = 0.2684…;
P10 = 1 · 0.810 · (1 – 0.8)10 – 10 = 1 · 0.810 · 0.20 = 0.1074…

Разумеется, P0 + P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10 = 1.



<== предыдущая лекция | следующая лекция ==>
Метод Мюллера | Нормальное распределение


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.