русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Общие представления об устройстве паровых турбин


Дата добавления: 2013-12-23; просмотров: 12972; Нарушение авторских прав


Конструкция основных узлов и деталей паровых турбин

Общие представления об устройстве паровых турбин

Лекция 3

О

При низком значении сопротивления акустическая система может выйти из строя, обратная же ситуация возможна, но при этом снижается мощность выходного сигнала.

Характеристики акустической системы

a) Полоса воспроизводимых частот– это амплитудно-частотная зависимость звукового давления или преобразование динамиком электрического сигнала в звуковой в заданном диапазоне частот (20Гц – 20 кГц).

b) Чувствительность звуковой колонки характеризуется звуковым давлением, которое она создаст на расстоянии 1 метр при подаче на ее вход электрического сигнала мощностью 1 Вт. Чувствительность определяется как среднее звуковое давление в определенной полосе частот. Чем выше значение этой характеристики, тем лучше акустическая система передает динамический диапазон музыкальной программы (90 – 110 и более дБ).

c) Коэффициент гармоник или нелинейные искажения. Это искажения появляющиеся при воспроизведении звука. Для высококачественных акустических систем класса Hi-Fiэтот коэффициент не должен превышать:

1,5 % - 1% в диапазоне частот 250 – 6300 Гц.

d) Мощность. Электрическая мощность, которую выдерживает акустическая система. Мощность подразделяется на шумовую, синусоидальную, долговременную, кратковременную.

Очень часто на практике производители указывают некоторую абстрактную мощность акустической системы (100, 200 Вт и больше). В результате это значение может оказаться совершенно не тем что вы ожидаете. В реальности, в паспорте акустической системы должно быть указано несколько значений мощности.

e) Электрическое сопротивление. Составляет 4, 8 или 16 Ом. Стандартами допускается снижение реального электрического сопротивления от номинального значения не более чем на 20 % в диапазоне частот 20-20000 Гц.



3.2Устройство паровой турбины

3.4. Типы паровых турбин и области их использования

3.5. Основные технические требования к паровым турбинам и их характеристики

Паровая турбина представляет собою роторный лопаточный двигатель, в котором энергия давления поступающего из котла пара сначала преобразуется в кинетическую энергию пара, вытекающего с большой скоростью из сопел, а затем, на лопатках ротора,- в механическую энергию вращения вала. Сопла это направляющие аппараты, предназначенные для преобразования внутренней энергии пара в кинетическую энергию упорядоченного движения молекул.

Схема простейшей паровой турбины представлена на рис. 3.1.

Основной частью турбины является ротор, состоящий из вала 1 с насаженным на нем рабочим колесом 2, на котором укреплены рабочие лопатки 3 изогнутой формы. Перед диском с рабочими лопатками имеется сопло 4, из которого пар поступает на рабочие лопатки турбины.

 

 

1 – вал; 2 – рабочее колесо; 3 – рабочая лопатка; 4 – сопло

Рисунок 3.1– Принцип действия турбины

 

Сопло и рабочее колесо составляют одну ступень. На рисунке 1.1, таким образом, представлена принципиальная схема одноступенчатой турбины.

Полученный в парогенераторе перегретый пар при температуре 600 С и давлении 30 МПа по паропроводам передаётся в сопла.

Если перед входом в сопло пар имел некоторую начальную скорость и начальное давление (см. рис. 3.2), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения и уменьшение давления до значения . Скорость входа пара на рабочую лопатку называют абсолютной скоростью. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит, следовательно, давление пара не меняется. Абсолютная скорость движения пара уменьшается с до вследствие вращения турбины со скоростью V. V – это окружная или переносная скорость.

Рисунок 3.2 – Схема активной турбины

 

Конструктивно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток.

Реактивными турбинаминазывают такие турбины, у которых расширение пара происходит не только в соплах перед поступлением пара на рабочие лопатки, но и на лопатках самого рабочего колеса. Это достигается тем, что канал, образованный рабочими лопатками выполняется суживающимся.

Изменение параметров пара в реактивной ступени турбины показано на рис. 3.3. В соплах турбины происходит частичное расширение пара до промежуточного давления .

Дальнейшее расширение пара до давления происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения , а в началах между лопатками уменьшается из-за вращения лопаток до значения .

Рисунок 3.3 – Схема работы реактивной турбины

 

В настоящее время турбины выполняют многоступенчатыми, причем водной и той же турбине могут быть как активные, так и реактивные ступени.

 

3.2Устройство паровой турбины

Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.

 


Рис. 3.4 Устройство паровой турбины

 

Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке Как правило, каждый из роторов размещают на двух опорных подшипниках. Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.

Каждый из роторов помещают в корпус цилиндра (см., например, поз. 24). При больших давлениях (а в современных турбинах оно может дос­тигать 30 МПа » 300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.

Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях — опорах Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают концевыми уплотнениями (см. поз. 40, 32, 19) специальной конструкции.

Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите. В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.

После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.

При работе турбины пар из котла по одному или нескольким паропроводам (это зависит от мощности турбины) поступает сначала к главной паровой задвижке, затем к стопорному (одному или нескольким) и, наконец, к регулирующим клапанам (чаще всего — 4). От регулирующих клапанов (на рис. 3.4 не показаны) пар по перепускным трубам 1 (на рис. 3.4 их четыре: две из них присоединены к крышке 46 внешнего корпуса ЦВД, а две других подводят пар в нижние половины корпуса) подается в паровпускную камеру 33 внутреннего корпуса ЦВД. Из этой полости пар попадает в проточную часть турбины и, расширяясь, движется к выходной камере ЦВД 38. В этой камере в нижней половине корпуса ЦВД имеются два выходных патрубка 37. К ним приварены паропроводы, направляющие пар в котел для промежуточного перегрева.

Вторично перегретый пар по трубопроводам поступает через стопорный клапан (не показан на рис. 3.4) к регулирующим клапанам 4, а из них — в паровпускную полость ЦСД 26. Далее пар расширяется в проточной части ЦСД и поступает в его выходной патрубок 22, а из него — в две перепускные трубы 6 (иногда их называют ресиверными), которые подают пар в паровпускную камеру ЦНД 9. ЦВД и ЦСД, ЦНД почти всегда выполняют двухпоточными: попав в камеру 9, пар расходится на два одинаковых потока и, пройдя их, поступает в выходные патрубки ЦНД 14. Из них пар направляется вниз в конденсатор. Перед передней опорой 41 располагается блок регулирования и управления турбиной 44. Его механизм управления 43 позволяет пускать, нагружать, разгружать и останавливать турбину.

Уплотнение представлено на рис. 3.5.

 

 

Рис.3.5. Лабиринтное уплотнение для валов турбин

 

В обойме 7, имеющей такую же конструкцию, как и обойма диафрагм выполнена кольцевая расточка 1, в которую вставляются сегменты уплотнений 3 (по три сегмента в каждую половину обоймы). Сегменты имеют тонкие (до 0,3 мм) кольцевые гребни, устанавливаемые по отношению к валу с очень малым зазором (0,5—0,6 мм). Совокупность кольцевых щелей между гребнями 4 и кольцевыми выступами 6 и кольцевых камер между ними называется лабиринтовым уплотнением. Высокое гидравлическое сопротивление, которым оно обладает, обеспечивает малую утечку пара помимо проточной части турбины.

Типичная рабочая лопатка (рис. 3.6) состоит из трех основных элементов: профильной части 1; хвостовика 2, служащего для крепления лопатки на диске; шипа 6 прямоугольной, круглой или овальной формы, выполняемого на торце профильной части лопатки за одно целое.

 

Рис.3.6.Рабочая лопатка ЦВД и ЦСД

 

Лопатки изготавливаются из нержавеющей стали, содержащей 13 % хрома, методом штамповки и последующего фрезерования и набираются на диске через два специальных колодца, в которые затем устанавливаются замковые лопатки с хвостовиками специальной формы.

Отдельно прокатывают бандажную ленту 7, в которой пробивают отверстия, соответствующие форме шипов и расстоянию между ними. Лента нарезается на куски со строго рассчитанным числом объединяемых лопаток. Бандажная лента надевается на шипы, которые затем расклепываются. Ряд соседних лопаток (обычно от 5 до 14), объединенных бандажной лентой (бандажом), называется пакетом рабочих лопаток. Главная цель пакетирования — обеспечить вибрационную надежность рабочих лопаток (не допустить их поломки от усталости вследствие колебаний). После расклепки шипов на бандажах рабочих лопаток ротор устанавливают на токарный станок и окончательно протачивают гребни уплотнений.

На рис. 3.6 показана лишь одна из типичных конструкций, которые отличаются большим разнообразием как типов хвостовиков, так и бандажей. В современных конструкциях бандажи фрезеруют заодно с профильной частью (с шириной бандажа, равной шагу лопаток), иногда соединяют рабочие лопатки в пакете сваркой.

Рис.3.7 Ротор двухпоточного ЦНД мощной турбины

 

На рис. 3.7 показан двухпоточный ротор ЦНД в процессе обработки на токарном станке. Первые две ступени имеют ленточ­ные бандажи, а последние ступени — две проволочные связи.

Главным элементом проточной части турбины, определяющим весь ее облик, является рабочая лопатка последней ступени. Чем большую длину она имеет и чем на большем диаметре она установлена (иными словами, чем больше площадь для прохода пара последней ступени), тем более экономичнее турбина. Поэтому история совершенствования турбин — это история создания последних ступеней. В начале 50-х годов ЛМЗ была разработана рабочая лопатка длиной 960 мм для последней ступени со средним диаметром 2,4 м, и на ее базе созданы турбины мощностью 300, 500 и 800 МВт. В конце 70-х была создана новая рабочая лопатка длиной 1200 мм для ступени со средним диаметром 3 м. Это позволило создать новую паровую турбину для ТЭС мощностью 1200 МВт и для АЭС мощностью 1000 МВт.

 

 

Рис.3.8 Опора валопровода

 

На рис. 3.8 показана одна из опор валопровода. Основанием 12 нижняя половина корпуса 2 устанавливается на фундаментную раму (на рисунке не показана). В расточку корпуса на колодках 1, 4 и 10 помещается нижняя половина вкладыша 3. Внутренняя поверхность 8 обеих половин вкладыша выполнена цилиндрической или овальной и залита баббитом, — легкоплавким антифрикционным сплавом на основе олова, допускающего вращение ротора на очень низкой частоте вращения даже при отсутствии смазки. Прямо на поверхность вкладыша 8 и на аналогичную поверхность соседнего вкладыша при монтаже турбины укладывается ротор. Сверху его накрывают верхней половиной вкладыша и притягивают к нижней половине шпильками, ввинчиваемыми в отверстия 9. Затем устанавливается крышка корпуса подшипника.

Масло для смазки шеек валов подается насосами из масляного бака, установленного на нижней отметке конденсационного помещения. Размер масляного бака зависит от мощности турбины: чем больше мощность, тем больше цилиндров и, следовательно, роторов и их опор, требующих смазки. Кроме того, с ростом мощности растет диаметр шеек, и эти два обстоятельства требуют большого расхода масла и соответственно масляного бака большой емкости, достигающей 50—60 м3. Для смазки подшипников используется либо специальное (турбинное) минеральное масло, либо синтетические негорючие масла. Последние намного дороже, но зато пожаробезопаснее.

От насосов по трубопроводам масло, пройдя через маслоохладители, поступает к емкостям, располагаемым в крышках подшипника, а из них — к отверстиям 6 и к выборке 7, раздающей масло на всю ширину шейки вала. Масло за счет гидродинамических сил «загоняется» под шейку вала, и таким образом вал «плавает» на масляной пленке, не касаясь баббитовой заливки. Масло, пройдя под шейкой вала, выходит через торцевые зазоры вкладыша и стекает на дно корпуса подшипника, откуда самотеком направляется обратно в масляный бак. Вкладыш опоры показан на рис. 3.9.

 

Рис.3.9 Опорный вкладыш опоры валопровода

 

3.4. Типы паровых турбин и области их использования

Для понимания места и роли паровых турбин рассмотрим их общую классификацию. Из большого разнообразия используемых паровых турбин, прежде всего можно выделить турбины транспортные и стационарные.

Транспортные паровые турбины чаще всего используются для привода гребных винтов крупных судов.

Стационарные паровые турбины — это турбины, сохраняющие при эксплуатации неизменным свое местоположение. В настоящей книге рассматриваются только стационарные паровые турбины.

В свою очередь стационарные паровые турбины можно классифицировать по ряду признаков.

1. По назначению различают турбины энергетические, промышленные и вспомогательные.

Энергетические турбины служат для привода электрического генератора, включенного в энергосистему, и отпуска тепла крупным потребителям, например жилым районам, городам и т.д. Их устанавливают на крупных ГРЭС, АЭС и ТЭЦ. Энергетические турбины характеризуются, прежде всего, большой мощностью, а их режим работы — постоянной частотой вращения, определяемой постоянством частоты сети.

Основным производителем энергетических паровых турбин в России является Ленинградский металлический завод (Санкт-Петербург). Он выпускает мощные паровые турбины для ТЭС (мощностью 1200, 800, 500, 300 и 200 МВт), ТЭЦ (мощностью 180, 80 и 50 МВт и менее), АЭС (мощностью 1000 МВт).

Другим крупным производителем энергетических паровых турбин является Турбомоторный завод (ТМЗ, г. Екатеринбург). Он выпускает только теплофикационные турбины (мощностью 250, 185, 140, 100 и 50 МВт и менее).

На ТЭС России установлено достаточно много мощных паровых тур­бин Харьковского турбинного завода (ХТЗ, Украина) (мощностью 150, 300 и 500 МВт). Им же произведены все паровые турбины, установленные на АЭС России мощностью 220, 500 и 1000 МВт.

Таким образом, в настоящее время в России функционирует всего два производителя мощных паровых турбин. Если говорить о зарубежных производителях турбин, то их число также является небольшим. Большинство из них являются транснациональными объединениями. В Европе главными производителями паровых турбин являются компании Siemens (Германия), Acea Brown Bovery (ABB, германско-швейцарское объединение), GEC-Alsthom (англо-французское объединение), Scoda (Чехия). В США производителями мощных энергетических турбин являются компании General Electric и Westinghouse, в Японии — Hitachi, Toshiba, Mitsubisi. Все перечисленные производители выпускают паровые турбины вплоть до мощности 1000 МВт и выше. Технический уровень некоторых из них не только не уступает нашим производителям, но и превосходит их.

Промышленные турбины также служат для производства тепловой и электрической энергии, однако их главной целью является обслуживание промышленного предприятия, например, металлургического, текстильного, химического, сахароваренного и др. Часто генераторы таких турбин работают на маломощную индивидуальную электрическую сеть, а иногда используются для привода агрегатов с переменной частотой вращения, например воздуходувок доменных печей. Мощность промышленных турбин существенно меньше, чем энергетических. Основным производителем промышленных турбин в России является Калужский турбинный завод (КТЗ).

Вспомогательные турбины используются для обеспечения технологического процесса производства электроэнергии — обычно для привода питательных насосов и воздуходувок котлов.

Питательные насосы энергоблоков мощностью вплоть до 200 МВт приводятся электродвигателями, а мощностью выше — с помощью паровых турбин, питаемых паром из отбора главной турбины. Например, на энергоблоках мощностью 800 и 1200 МВт установлено соответственно по два и три питательных турбонасоса мощностью 17 МВт каждый, на энергоблоках мощностью 250 (для ТЭЦ) и 300 МВт — один питательный турбонасос мощностью 12 МВт; на энергоблоках мощностью 1000 МВт для АЭС используется два питательных насоса мощностью 12 МВт.

Котлы энергоблоков мощностью 800 и 1200 МВт оборудованы соответственно двумя и тремя воздуходувками, привод которых осуществляется также паровыми турбинами мощностью по 6 МВт каждая. Основным производителем вспомогательных паровых турбин в России является КТЗ.

2. По виду энергии, получаемой от паровой турбины, их делят на конденсационные и теплофикационные.

В конденсационных турбинах (типа К) пар из последней ступени отводится в конденсатор, они не имеют регулируемых отборов пара, хотя, как правило, имеют много нерегулируемых отборов пара для регенеративного подогрева питательной воды, а иногда и для внешних тепловых потребителей. Главное назначение конденсационных турбин — обеспечивать производство электроэнергии, поэтому они являются основными агрегатами мощных ТЭС и АЭС. Мощность самых крупных конденсационных турбоагрегатов достигает 1000—1500 МВт.

Теплофикационные турбины имеют один или несколько регулируемых отборов пара, в которых поддерживается заданное давление. Они предназначены для выработки тепловой и электрической энергии, и мощность самой крупной из них составляет 250 МВт. Теплофикационная турбина может выполняться с конденсацией пара и без нее. В первом случае она может иметь отопительные отборы пара (турбины типа Т) для нагрева сетевой воды для обогрева зданий, предприятий и т.д., или производственный отбор пара (турбины типа П) для технологических нужд промышленных предприятий, или тот и другой отборы (турбины типа ПТ и ПР). Во втором случае турбина носит название турбины с противодавлением (турбины типа Р). В ней пар из последней ступени направляется не в конденсатор, а обычно производственному потребителю. Таким образом, главным назначением турбины с противодавлением является производство пара заданного давления (в пределах 0,3—3 МПа). Турбина с противодавлением может также иметь и регулируемый теплофикационный или промышленный отбор пара, и тогда она относится к типу ТР или ПР.

Теплофикационные турбины с отопительным отбором пара (типа Т) спроектированы так, чтобы при максимальной теплофикационной нагрузке ступени, расположенные за зоной отбора, мощности не вырабатывали. В последние годы ряд турбин проектируются так, что даже при максимальной нагрузке последние ступени вырабатывают мощность. Такие турбины относятся к типу ТК.

3. По используемым начальным параметрам пара паровые турбины можно разделить на турбины докритического и сверхкритического начального давления, перегретого и насыщенного пара, без промежуточного перегрева и с промежуточным перегревом пара.

Как уже известно критическое давление для пара составляет примерно 22 МПа, поэтому все турбины, начальное давление пара перед которыми меньше этого значения, относятся к паровым турбинам докритического начального давления. В России стандартное докритическое давление для паровых турбин выбрано равным 130 ат (12,8 МПа), кроме того, имеется определенный процент турбин на начальное давление 90 ат (8,8 МПа). На докритические параметры выполняются все паровые турбины для АЭС и ТЭЦ (кроме теплофикационной турбины мощностью 250 МВт), а также турбины мощностью менее 300 МВт для ТЭС. Докритическое начальное давление зарубежных паровых турбин обычно составляет 16—17 МПа, а максимальная единичная мощность достигает 600—700 МВт.

Все мощные конденсационные энергоблоки (300, 500, 800, 1200 МВт), а также теплофикационный энергоблок мощностью 250 МВт выполняют на сверхкритические параметры пара (СКД) — 240 ат (23,5 МПа) и 540 °С. Переход от докритических параметров пара к СКД позволяет экономить 3—4 % топлива.

Все турбины ТЭС и ТЭЦ работают перегретым паром, а АЭС — насыщенным (с небольшой степенью влажности).

Все мощные конденсационные турбины на докритические и сверхкритические параметры пара выполняют с промежуточным перегревом. Из теплофикационных турбин только турбина ЛМЗ на докритические параметры мощностью 180 МВт и турбина ТМЗ на СКД мощностью 250 МВт имеют промежуточный перегрев. Устаревшие конденсационные турбины мощностью 100 МВт и менее и многочисленные теплофикационные паровые турбины вплоть до мощности 185 МВт строятся без промперегрева.

4. По зоне использования турбин в графике электрической нагрузки паровые турбины можно разделить на базовые и полупиковые. Базовые турбины работают постоянно при номинальной нагрузке или близкой к ней. Они проектируются так, чтобы и турбина, и турбоустановка имели максимально возможную экономичность. К этому типу турбин следует, безусловно, отнести атомные и теплофикационные турбины. Полупиковые турбины создаются для работы с периодическими остановками на конец недели (с ночи пятницы до утра в понедельник) и ежесуточно (на ночь). Полупиковые турбины (и турбоустановки) с учетом их малого числа часов работы в году выполняют более простыми и соответственно более дешевыми (на сниженные параметры пара, с меньшим числом цилиндров). Электроэнергетика России в силу ряда причин всегда страдала от недостатка в энергосистеме полупиковых мощностей. Примерно 25 лет назад ЛМЗ спроектировал полупиковую конденсационную турбину мощностью 500 МВт на параметры 12,8 МПа, 510 °С/510 °С. Головной образец этой турбины предполагалось установить на Лукомльской ГРЭС (б. Белоруссия). Однако до сих пор ни одной специальной полупиковой турбины в России не работает. Вместе с тем в Японии и США работают десятки полупиковых турбин упрощенной конструкции.

5. По конструктивным особенностям паровые турбины можно классифицировать по числу цилиндров, частоте вращения и числу валопроводов.

По числу цилиндров различают турбины одно- и многоцилиндровые. Количество цилиндров определяется объемным пропуском пара в конце процесса расширения. Чем меньше плотность пара, т.е. меньше его конечное давление, и чем больше мощность турбины, т.е. больше массовый расход, тем больше объемный пропуск и соответственно требуемая площадь для прохода пара через рабочие лопатки последней ступени. Однако если рабочие лопатки делать длиннее, а радиус их вращения больше, то центробежные силы, отрывающие профильную часть лопатки, могут возрасти настолько, что лопатка оторвется. Поэтому с увеличением мощности сначала переходят на двухпоточный ЦНД, а затем увеличивают их число. Конденсационные турбины можно выполнить одноцилиндровыми вплоть до мощности 50—60 МВт, двухцилиндровыми — до 100—150 МВт, трехцилиндровыми — до 300 МВт, четырехцилиндровыми — до 500 МВт, пятицилиндровыми — вплоть до 1300 МВт.

По частоте вращения турбины делятся на быстроходные и тихоходные. Быстроходные турбины имеют частоту вращения 3000 об/мин = 50 об/с. Они приводят электрогенератор, ротор которого имеет два магнитных полюса, и поэтому частота вырабатываемого им тока равна 50 Гц. На эту частоту строят большинство паровых турбин для ТЭС, ТЭЦ и частично для АЭС в нашей стране и почти во всем мире. В Северной Америке и на части территории Японии быстроходные турбины строят на частоту вращения 3600 об/мин = 60 об/с, так как там принятая частота сети равна 60 Гц.

Ранее в говорилось о том, что поскольку из-за низких начальных параметров работоспособность пара в турбинах АЭС мала, а снижение капитальных затрат требует увеличения мощности, т.е. массы пропускаемого пара, то объемный расход на выходе из турбины оказывается столь значительным, что оказывается целесообразным переход на меньшую частоту вращения. Так как число магнитных полюсов в электрогенераторе должно быть целым и четным, то переход на использование четырехполюсного электрогенератора и получения той же частоты сети, что и при двухполюсном электрогенераторе, требует снижения частоты вдвое. Таким образом, тихоходные турбины в нашей стране имеют частоту вращения 1500 об/мин = 25 об/с.

 

Рис.3.10 Тихоходная турбина насыщенного пара мощностью 1160 МВт для американской АЭС

 

На рис. 3.10 показана тихоходная атомная турбина фирмы ABB мощностью 1160 МВт на частоту вращения 30 об/с. Гигантские размеры турбины хорошо видны в сравнении с фигурой человека, стоящего у средней опоры ее валопровода. Турбина не имеет ЦСД, и пар из ЦВД направляется в два горизонтальных сепаратора-пароперегревателя (СПП), а из них — раздается на три двухпоточных ЦНД. По такой же схеме на частоту вращения 25 об/с построены энергоблоки мощностью 1000 МВт на Балаковской и Ростовской АЭС.

Для АЭС, построенных для теплых климатических условий, т.е. для высокой температуры охлаждающей воды и соответственно высокого давления в конденсаторе), можно строить и быстроходные атомные турбины (рис. 3.11). Пар к ЦВД турбины поступает из реакторного отделения по четырем паропроводам 11. Пройдя ЦВД, пар поступает к СПП 10 вертикального типа, а после них с помощью ресивера 3 раздается на три одинаковых двухпоточных ЦНД 4. Под каждым ЦНД установлен свой конденсатор, также хорошо видный на макете.

По числу валопроводов различают турбины одновальные (имеющие один валопровод — соединенные муфтами роторы отдельных цилиндров и генератора) и двухвальные (имеющие два валопровода каждый со своим генератором и связанные только потоком пара). На российских тепловых электростанциях используют только одновальные турбины.В начале 70-х годов на Славянской ГРЭС на Украине построена единственная двухвальная турбина мощностью 800 МВт, да и то потому, что в то время не было электрогенератора мощностью 800 МВт.

 

Рис.3.11 Быстроходная атомная турбина мощностью 1093 МВт для испанской АЭС (“ Трилло”), построенная фирмой Siemens

 

Для обозначения типов турбин ГОСТ предусматривает специальную маркировку, состоящую из буквенной и числовой частей. Буквенная часть указывает тип турбины, следующее за ней число — номинальную мощность турбины в мегаваттах. Если необходимо указать и максимальную мощность турбины, то ее значение приводят через косую черту. Следующее число указывает номинальное давление пара перед турбиной в МПа: для теплофикационных турбин далее через косую черту указывают давление в отборах или противодавление в МПа. Наконец, последняя цифра, если она имеется, указывает номер модификации турбины, принятый на заводе-изготовителе.

Приведем несколько примеров обозначений турбин.

Турбина К-210-12,8-3 — типа К, номинальной мощностью 210 МВт с начальным абсолютным давлением пара 12,8 МПа (130 кгс/см2), третьей модификации.

Трубина П-6-3,4/0,5 — типа П, номинальной мощностью 6 МВт, с на­чальным абсолютным давлением пара 3,4 МПа и абсолютным давлением отбираемого пара 0,5 МПа.

Турбина Т-110/120-12,8 — типа Т, номинальной мощностью 110 МВт и максимальной мощностью 120 МВт, с начальным абсолютным давлением пара 12,8 МПа.

Турбина ПТ-25/30-8,8/1 — типа ПТ, номинальной мощностью 25 МВт и максимальной мощностью 30 МВт, с начальным абсолютным давлением пара 8,8 МПа (90 ат) и абсолютным давлением отбираемого пара 1 МПа.

Турбина Р-100/105-12,8/1,45 — типа Р, номинальной мощностью 100 МВт максимальной мощностью 105 МВт, с начальным абсолютным давлением пара 12,8 МПа и абсолютным противодавлением 1,45 МПа.

Турбина ПР-12/15-8,8/1,45/0,7 — типа ПР, номинальной мощностью 12 МВт и максимальной мощностью 15 МВт, с начальным абсолютным давлением 8,8 МПа, давлением в отборе 1,45 МПа и противодавлением 0,7 МПа.

3.5. Основные технические требования к паровым турбинам и их характеристики

Для того чтобы увидеть, насколько совершенной машиной является паровая турбина, достаточно рассмотреть технические требования, предъявляемые к ней. Они сформулированы в государственных стандартах (ГОСТ). Здесь мы остановимся только на наиболее важных из них.

Прежде всего, к турбине предъявляется ряд требований, которые мож­но охватить одним термином — надежность. Надежность технического объекта — это его свойство выполнять заданные функции в заданном объеме при определенных условиях функционирования. Применительно к паровой турбине надежность — это бесперебойная выработка мощности при предусмотренных затратах топлива и установленной системе эксплуатации, технического обслуживания и ремонтов, а также недопущения ситуаций, опасных для людей и окружающей среды.

Важно подчеркнуть, что понятие надежности включает в себя и понятие экономичности. Бесперебойно работающая турбина, работающая с низкой экономичностью из-за износа или с ограничением мощности из-за внутренних неполадок, не может считаться надежной. Надежность — это комплексное свойство, характеризуемое такими подсвойствами, как безотказность, долговечность, ремонтопригодность, сохраняемость, управляемость, живучесть, безопасность. Не вдаваясь в строгие определения этих подсвойств, отметим главные из них.

Безотказность — это свойство турбины непрерывно сохранять работоспособное состояние в течение некоторой наработки. Средняя наработка на отказ для турбин ТЭС мощностью 500 МВт и более должна быть не менее 6250 ч, а меньшей мощности — не менее 7000 ч, а для турбин АЭС — не менее 6000 ч. Если учесть, что в календарном году 8760 ч и что какое-то время турбина не работает (например, по указанию диспетчера энергосистемы), то это означает, что отказы по вине турбины в среднем должны происходить не чаще 1 раза в год.

Полный установленный срок службы турбины ТЭС должен быть не менее 40 лет, а турбин АЭС — не менее 30 лет. При этом оговаривается два важных обстоятельства. Первое: этот срок службы не относится к быстро­изнашивающимся деталям, например, рабочим лопаткам, уплотнениям, крепежным деталям. Для таких деталей важен средний срок службы до капитального ремонта (межремонтный период). В соответствии с ГОСТ он должен быть не менее 6 лет (кроме того, на ТЭС и АЭС реализуется плановая система текущих и планово-предупредительных ремонтов).

Для турбин ТЭС, а точнее для их деталей, работающих при температуре свыше 450 °С, кроме такого показателя долговечности, как срок службы, вводится другой показатель — ресурс — суммарная наработка турбины от начала эксплуатации до достижения предельного состояния. На этапе проектирования предельное состояние определяется как назначенный ресурс. По определению — это ресурс, при достижении которого эксплуатация турбины должна быть прекращена независимо от ее технического состояния. На самом деле при достижении назначенного ресурса турбина может сохранить значительную дополнительную работоспособность (остаточный ресурс) и, учитывая ее высокую стоимость, срок работы турбины продляют. Учитывая нелогичность применительно к турбине термина «назначенный ресурс», стали употреблять термин «расчетный ресурс». Таким образом, расчетный (назначенный) ресурс — это наработка турбины, которая гарантируется заводом-изготовителем; при ее достижении должен быть рассмотрен вопрос о ее дальнейшей эксплуатации.

ГОСТ не регламентирует расчетного ресурса (он должен быть установлен в технических условиях или техническом задании на ее проектирование в каждом конкретном случае). Долгие годы расчетный ресурс составлял 100 тыс. ч, сейчас — как правило, 200 тыс. ч. Важнейшим требованием к турбине является высокая экономичность. Коэффициент полезного действия турбины оценивается по КПД ее цилиндров.

Коэффициент полезного действия цилиндра характеризуется той долей работоспособности пара, которую удалось преобразовать в механическую энергию. Наивысшую экономичность имеет ЦСД: в хороших турбинах он составляет 90—94 %. Коэффициент полезного действия ЦВД и ЦНД существенно меньше и в среднем составляет 84—86 %. Это уменьшение обусловлено существенно более сложным характером течения пара в решетках очень малой (несколько десятков миллиметров в первых ступенях ЦВД) и очень большой (1 м и более) в последних ступенях ЦНД высотой решеток. Рассчитать это течение и подобрать под него профили лопаток затруднительно даже при современных вычислительных средствах. Кроме того, значительная часть проточной части ЦНД работает влажным паром, капли влаги имеют скорость существенно меньшую, чем пар, и оказывают на вращающиеся рабочие лопатки тормозящее действие.

Кроме приведенных технических требований ГОСТ содержит многочисленные другие требования, в частности, к системе защиты турбины при возникновении аварийных ситуаций, к маневренности (диапазон длительной работы — обычно 30—100 % номинальной мощности; продолжительности пуска и остановки, число возможных пусков и т.д.), к системе регулирования и управления турбиной, к ремонтопригодности и безопасности (пожаробезопасности, уровня вибрации, шума и т.д.), методов контроля параметров рабочих сред (пара, масла, конденсата), транспортирования и хранения.



<== предыдущая лекция | следующая лекция ==>
Акустическая система | Условия применения комплекса маркетинга российскими фирмами.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.