русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Система


Дата добавления: 2013-12-23; просмотров: 1849; Нарушение авторских прав


Решение вопроса о специфических признаках системного подхода, в отличие от любого другого типа научного анализа, в значительной степени предопределяется тем, что следует понимать под системой. Легко убедиться в том, что термин «система» используется в столь многочисленных смыслах и значениях, что опасность упустить существенное содержание этого понятия очень велика

Действительно, под системой в литературе понимается «комплекс элементов, находящихся во взаимодействии», «нечто такое, что может изменяться с течением времени», «любая совокупность переменных..., свойственных реальной машине», «множество элементов с отношениями между ними и между их атрибутами», «совокупность элементов, организованных таким образом, что изменение, исключение или введение нового элемента закономерно отражаются на остальных элементах», «взаимосвязь самых различных элементов», «все, состоящее из связанных друг с другом частей»

Наверное, самым правильным было бы сказать, что в настоящее время вообще не существует удовлетворительного, достаточно широко принятого понятия системы

В этих условиях любая попытка обобщить все или по крайней мере все основные значения термина «система» с неизбежностью приводят к тому, что под системой начинают понимать все что угодно.

И все-таки необходимость выработки такого понятия очень велика, коли мы взялись за рассмотрение сущности системного подхода. В первом приближении можно придерживаться нормативного понятия системы.

Система (греч. — «составленное из частей», «соединение», от «соединяю, составляю») — объективное единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе

Как и всякое фундаментальное понятие, этот термин лучше всего конкретизируется в процессе рассмотрения его основных свойств. Таких свойств можно выделить четыре.



  1. Система есть прежде всего совокупность элементов. При определенных условиях элементы могут рассматриваться как системы.
  2. Наличие существенных связей между элементами и (или) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами, не входящими в данную систему. Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы. Указанное свойство отличает систему от простого конгломерата и выделяет ее из окружающей среды в виде целостного объекта.
  3. Наличие определенной организации, что проявляется в снижении термодинамической энтропии (степени неопределенности) системы по сравнению с энтропией системо-формирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент, число квантов пространства и времени.
  4. Существование интегративных свойств, т. е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью. Вывод: система не сводится к простой совокупности элементов, и, расчленяя систему на отдельные части, нельзя познать все свойства системы в целом.

Таким образом, в самом общем случае понятие «система» характеризуется:

  1. наличием множества элементов;
  2. наличием связей между ними;
  3. целостным характером данного устройства или процесса.

Техническая система — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Это определение не является ни единственным, ни общепризнанным. Есть сотни определений, которые с некоторой условностью можно разделить на три группы.

  1. ТС как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя — субъекта управления. Он выделяет элементы изучаемой системы, т.е. определяет, какие из ее характеристик являются существенными; он выделяет систему из окружающей среды, т.е. как минимум определяет входы и выходы (тогда они рассматриваются как черный ящик), а как максимум подвергает анализу ее структуру, выявляет механизм функционирования и исходя из этого воздействует на нее в широком направлении. Здесь ТС — объект исследования и объект управления.
  2. ТС как институт, способ исследования. Наблюдатель конструирует ТС как некоторое абстрактное отображение реальных объектов. В этой трактовке понятие ТС смыкается с понятием модели.
  3. ТС — некий компромисс между двумя первыми. ТС здесь — искусственно создаваемый комплекс элементов (например, коллективов, технических средств, научный теорий), предназначенный для решения сложной социально-экономической задачи. Следовательно, здесь наблюдатель не только выделяет из среды систему, но и создает, синтезирует ее. ТС является реальным объектом и одновременно абстрактным отображением связей действительности. Именно в этом смысле понимает ТС системотехника [

Наиболее характерные черты ТС:

  • наличие определенной целостности, функционального единства (общей цели, назначения и пр.), что приводит к сложному иерархическому строению системы;
  • большие масштабы по типу частей, объему выполняемых функций, абсолютной стоимости (ИЛ-96 м/т = 75 млн. дол.);
  • сложность (полифункциональность) поведения;
  • высокая степень автоматизации;
  • нерегулярное, статистически распределяемое во времени поступление внешних воздействий;
  • наличие в целом ряде случаев состязательного момента, т.е. такого функционирования ТС, при котором надо учитывать конкуренцию отдельных частей (в американской ракете «Редай», что надо увеличивать: массу боевой части или системы управления и наведения?);
  • наличие связей (положительных, отрицательных, одноплановых, многоплановых);
  • многоаспектность (техническая, экономическая, социальная, психологическая пр.);
  • контринтуитивность (причина и следствие тесно не связаны ни во времени, ни в пространстве);
  • нелинейность (синергетика!!!).

От своих предшественников, орудий труда и технических устройств ТС отличаются так же, как реактивный самолет от телеги. Причем не только количественно — обилием элементов, но и качественно — иным, более высоким уровнем организации, функционирования и управления. Несколько примеров.

Мощная металлургическая система пущена на Ижорском заводе. Ведется строительство комплекса сооружений для защиты Санкт-Петербурга от наводнений. Безопасные полеты современных самолетов обеспечивают соответствующие системы управления воздушным движением, навигации и посадки в Пулково... Сами комплексы объединяют большое число разнородных крупных систем. Создаются, таким образом, качественно новые технические объекты с более высоким уровнем организации систем. Достигается в процессе использования таких комплексов весьма существенный прирост экономического, экологического и социального эффектов. Подобные комплексы являются важнейшим рычагом ускорения НТП. Это требует от специалистов системного подхода к исследованию, разработке и эксплуатации комплексов.

Задолго до появления термина «система» системные объекты существовали в природе (биологические системы, экосистемы, космические системы). Они развивались независимо от нас, от системного подхода, спонтанно (в силу внутренних причин). Многих самоорганизующихся систем мы не знаем и сейчас, помалу открывая их. В основе развития природных систем лежат системообразующие законы структурного и функционального порядка (законы тяготения, механики...).

В технике мы имеем дело с комплексами. Это навязываемое субъектом понятие. Это конгломерат (механическое соединение разнородного, беспорядочная смесь), который мы пытаемся как-то организовать извне, от человека, от субъекта, самоорганизуемые в лучшем случае.

Итак, в природе — самоорганизующиеся системы; в технике — самоорганизуемые комплексы.

В природе импульсы организации имманентны (внутренне присущи) системам, а в технике — идут от человека, требует организации управления. Эти импульсы от человека должны быть соотнесены с природой объекта.

Но как только комплексы мы назвали сложной системой, так сразу же применительно к ним мы должны использовать методы, адекватные их природе, т.е. системные, и выявить законы (или хотя бы связи) их структуры, функционирования и развития.

Когда мы говорим о системе, то прежде всего подчеркиваем целостный характер материального объекта или процесса.

Выдвижение систем в качестве объектов исследования поставило перед наукой и техникой особую познавательную задачу. Эта задача, несомненно, значительно сложнее всех тех, которые стояли до нее. Вызвано это, однако, не тем, что в случае анализа системы инженер-исследователь имеет дело со множеством элементов (подобные ситуации анализируются давно), а тем, что системный анализ направлен на выявление связей, причем не отдельных, а целого комплекса влияющих друг на друга связей при требовании признания целостности технической системы. Вот этой познавательной задачи наука и техника ранее не знали [Садовский В. Методологические проблемы исследования объектов, представляющих собой системы // Социология в СССР. М.: Мысль, 1966. Т. 1].

Сделаем попытку классифицировать системы. Известно, что классификацией называется распределение некоторой совокупности объектов на классы по наиболее существенным признакам. Признак или их совокупность, по которым объекты объединяются в классы, являются основанием классификации. Класс — это совокупность объектов, обладающих некоторыми признаками общности.

Анализ существующих классификаций с учетом логических правил деления всего объема понятий, связанных с системами, позволяет сформулировать следующие требования к построению классификации:

  • в одной и той же классификации необходимо применять одно и то же основание;
  • объем элементов классифицируемой совокупности должен равняться объему элементов всех образованных классов;
  • члены классификации (образованные классы) должны взаимно исключать друг друга, т.е. должны быть непересекающимися;
  • подразделение на классы (для многоступенчатых классификаций) должно быть непрерывным, т.е. при переходах с одного уровня иерархии на другой необходимо следующим классом для исследования брать ближайший по иерархической структуре системы.

В соответствии с этими требованиями классификация систем предусматривает деление их на два вида — абстрактные и материальные

Материальные системы являются объектами реального времени. Среди всего многообразия материальных систем существуют естественные и искусственные системы.

Естественные системы представляют собой совокупность объектов природы, а искусственные системы — совокупность социально-экономических или технических объектов.

Естественные системы, в свою очередь, подразделяются на астрономические и планетарные, физические и химические.

Искусственные системы могут быть классифицированы по нескольким признакам, главным из которых является роль человека в системе. По этому признаку можно выделить два класса систем; технические и организационно-экономические системы.

В основе функционирования технических систем лежат процессы, совершаемые машинами, а в основе функционирования организационно-экономических систем — процессы, совершаемые человеко-машинными комплексами.

Абстрактные системы — это умозрительное представление образов или моделей материальных систем, которые подразделяются на описательные (логические) и символические (математические).

Логические системы есть результат дедуктивного или индуктивного представления материальных систем. Их можно рассматривать как системы понятий и определений (совокупность представлений) о структуре, об основных закономерностях состояний и о динамике материальных систем.

Символические системы представляют собой формализацию логических систем, они подразделяются на три класса:

статические математические системы или модели, которые можно рассматривать как описание средствами

математического аппарата состояния материальных систем (уравнения состояния);

динамические математические системы или модели, которые можно рассматривать как математическую формализацию процессов материальных (или абстрактных) систем;

квазистатические (квазидинамические) системы, находящиеся в неустойчивом положении между статикой и динамикой, которые при одних воздействиях ведут себя как статические, а при других воздействиях — как динамические.

Однако в литературе приводятся и другие классификации:

Большие системы (БС) — это системы, не наблюдаемые единовременно с позиции одного наблюдателя либо во времени, либо в пространстве. В таких случаях система рассматривается последовательно по частям (подсистемам), постепенно перемещаясь на более высокую ступень. Каждая из подсистем одного уровня иерархии описывается одним и тем же языком, а при переходе на следующий уровень наблюдатель использует уже мета-язык, представляющий собой расширение языка первого уровня за счет средств описания самого этого языка. Создание этого языка равноценно открытию законов порождения структуры системы и является самым ценным результатом исследования.

1. Сложные системы (СС) — это системы, которые нельзя скомпоновать из некоторых подсистем. Это равноценно тому, что:

    1. наблюдатель последовательно меняет свою позицию по отношению к объекту и наблюдает его с разных сторон;
    2. разные наблюдатели исследуют объект с разных сторон.

Пример: выбор материала ветрового стекла автомобиля. Задачу нельзя решить без того, чтобы не рассмотреть этот объект в самых разных аспектах и разных языках: прозрачность и коэффициент преломления — язык оптики; прочность и упругость — язык физики; наличие станков и инструментов для изготовления — язык технологии; стоимость и рентабельность — язык экономики и т.д.

Каждый из наблюдателей отбирает подмножество прозрачных материалов, удовлетворяющих его требованиям и критериям. В области пересечения подмножеств, отобранных всеми наблюдателями, мета-наблюдатель отбирает единственный материал, работая в метаязыке, объединяющем понятия всех языков низшего уровня и описывающем их свойства и соотношения. Трудность: подмножества, отобранные наблюдателями первого уровня, могут не пересечься. В таком случае мета-наблюдателю надо скомандовать некоторым из них (технологам, физикам и т.д.) снизить свои требования и, соответственно, расширить подмножества потенциальных решений. И здесь: экспертный опрос — важнейший инструмент системного анализа!

Системы можно соизмерять по степени сложности, используя разные аспекты самого этого понятия:

    1. путем соизмерения числа моделей СС;
    2. путем сопоставления числа языков, используемых в СС;
    3. путем соизмерения числа объединений и дополнений метаязыка.

Простота находится всегда в результате исследования!

2. Динамические системы (ДС) — это постоянно изменяющиеся системы. Всякое изменение, происходящее в ДС, называется процессом. Его иногда определяют как преобразование входа в выход системы.

Если у системы может быть только одно поведение, то ее называют детерминированной системой.

Вероятностная система — система, поведение которой может быть предсказано с определенной степенью вероятности на основе изучения ее прошлого поведения (протокола).

Свойство равновесия — способность возвращаться в первоначальное состояние (к первоначальному поведению), компенсируя возмущающие действия среды.

Самоорганизация ДС — способность восстанавливать свою структуру или поведения для компенсации возмущающих воздействий или изменять их, приспосабливаясь к условиям окружающей среды.

Инвариант поведения ДС — то, что остается неизменным в ее поведении в любой отрезок времени.

3. Кибернетические, или управляющие, системы (УС) — системы, с помощью которых исследуются процессы управления в технических, биологических и социальных системах. Центральным понятием здесь является информация — средство воздействия на поведение системы. УС позволяет предельно упростить трудно понимаемые процесс и управления в целях решения задач исследования проектирования.

Важным понятием УС является понятие обратной связи (ОС). ОС — информационное воздействие выхода на вход системы.

4. Целенаправленные системы (ЦС) — системы, обладающие целенаправленностью (т.е. управлением системы и приведением к определенному поведению или состоянию, компенсируя внешние возмущения). Достижение цели в большинстве случаев имеет вероятностный характер.

Английский кибернетик С. Вир подразделяет все системы на три группы — простые, сложные и очень сложные. При этом он считает весьма существенным способ описания системы — детерминированный или теоретико-вероятностный (табл. 1.9).

Наш соотечественник математик Г.Н. Поваров делит все системы в зависимости от числа элементов, входящих и них, на четыре группы:

  • малые системы (10— 103 элементов);
  • сложные системы (103—107 элементов);
  • ультра-сложные системы (107 —1030 элементов);
  • супер-системы (1030— 10200 элементов).

В качестве примеров систем второй группы он приводит автоматическую телефонную станцию, транспортную систему большого города, третьей группы — организмы высших животных и человека, социальные организации, четвертой группы — звездную вселенную.

По способу описания По уровню сложности
Простые Сложные Очень сложные
Детерминированные
  • «Оконная задвижка»
  • Проект механических мастерских
  • ЦЭВМ
  • Автоматизация
Вероятностные
  • «Подбрасывание монеты»
  • «Движение медузы»
  • Систематический контроль качества продукции
  • Хранение запасов
  • Условные рефлексы
  • Прибыль промышленного предприятия
  • Экономика
  • Мозг
  • Фирма

Таблица 1.9 — Классификация систем по С. Виру

Ученые А. И. Берг и Ю. И. Черняк определяют СС как систему, которую можно описать не менее чем на двух различных математических языках, например на языке теории дифференциальных уравнений и на языке алгебры Буля.



<== предыдущая лекция | следующая лекция ==>
Основные понятия системного анализа | Структура и структурное исследование


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.