русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Методы управления обменом

Сеть всегда объединяет несколько абонентов, каждый из которых имеет право передавать свои пакеты. Но по одному кабелю не может одновременно передаваться два пакета, иначе возможен конфликт (коллизия),что приведет к искажению и потере обоих пакетов. Значит, надо каким-то образом установить очередность доступа к сети (захвата сети) всеми абонентами, желающими передавать. Это относится прежде всего к сетям с топологиями «шина» и «кольцо». Точно так же при топологии «звезда» необходимо установить очередность передачи пакетов периферий­ными абонентами, иначе центральный абонент просто не сможет справиться с их обработкой.

Поэтому в любой сети применяется тот или иной метод управления обменом (он же метод доступа, он же метод арбитража), разрешающий или предотвращающий конфликты между абонентами. От эффективности выбранного метода зависит очень многое: скорость обмена информацией между компьютерами, нагрузочная способность сети, время реакции сети на внешние события и т.д. Метод управления - это один из важнейших параметров сети. Тип метода управления обменом во многом определяется особенностями топологии сети, но в то же время он и не привязан жестко к топологии.

Методы управления обменом делятся на две группы:

• Централизованные методы, при которых все управление сосредоточенно в одном месте. Недостатки таких методов: не­устойчивость к отказам центра, малая гибкость управления. Достоинство — отсутствие конфликтов.
• Децентрализованные методы, при которых отсутствует центр управления. Главные достоинства таких методов:
высокая устойчивость к отказам и большая гибкость. Однако возможны конфликты, которые надо разрешать.
Существует и другое деление методов управления обменом, относящееся, главным образом, к децентрализованным методам:
• Детерминированные методы определяют четкие правила, по которым чередуются захватывающие сеть абоненты. Абоненты имеют ту или иную систему приоритетов, причем приоритеты эти различны для всех абонентов. При этом, как правило, конфликты полностью исключены (или маловероятны), но некоторые абоненты могут дожидаться своей очереди слишком долго. К детерминированным методам относится, например, маркерный доступ, при котором право передачи передается по эстафете от абонента к абоненту.
• Случайные методы подразумевают случайное чередование передающих абонентов. В этом случае возможность конфликтов подразумевается, но предлагаются способы их разрешения. Случайные методы работают хуже, чем детерминированные, при больших информационных потоках в сети (при большом графике сети) и не гарантируют абоненту ве­личину времени доступа (это интервал между возникновением желания передавать и получением возможности передать свой пакет). Пример случайного метода - CSMA/CD.

Рассмотрим три наиболее типичных метода управления обменом, характерных для трех основных топологий.

 

1. Управление обменом в сети с топологией «звезда»

Для топологии «звезда» наиболее органично подходит централизованный метод управления, причем в данном случае не слишком важно, что находится в центре звезды: компьютер (центральный абонент), как на рис. 1.2, или же специальный концентратор, управляющий обменом, но сам не участвующий в нем (рис. 1.5). Именно эта вторая ситуация реализована в 1 сети 100VG AnyLAN.
Самый простой централизованный метод состоит в следующем.
Абоненты, желающие передать свой пакет (или, как еще говорят, имеющие заявки на передачу), посылают центру свои запросы. Центр же предоставляет им право передачи пакета в порядке очередности, например, по их физическому расположению по часовой стрелке. После окончания передачи пакета каким-то абонентом право передавать получит следующий по порядку (по часовой стрелке) абонент, имеющий заявку на передачу (рис. 3.5).

В этом случае говорят, что абоненты имеют географические приоритеты (по их физическому расположению). В каждый конкретный момент наивысшим приоритетом обладает следующий по порядку абонент, но в пределах полного цикла опроса ни один из абонентов не имеет никаких преимуществ перед другими. Никому не придется ждать своей очереди слишком долго. Максимальная величина времени доступа для любого абонента в этом случае будет равна суммарному времени передачи пакетов всех абонентов сети, кроме данного. Для топологии, показанной на рис.3.5, она составит четыре, длительности пакета. Никаких столкновений пакетов при данном методе быть не может в принципе, так как все решения о доступе принимаются в одном месте.

Возможен и другой принцип реализации централизованного управления.
В этом случае центр посылает запросы (управляющие пакеты) по очере­ди всем периферийным абонентам. Тот периферийный абонент, который хочет передавать (первый из опрошенных) посылает ответ (или же сразу начинает передачу). В дальнейшем сеанс обмена проводится именно с ним. После окончания этого сеанса центральный абонент продолжает опрос периферийных абонентов по кругу. Если же хочет передать центральный абонент, он передает без всякой очереди тому, кому хочет.
Как в первом, так и во втором случае никаких конфликтов быть не может (все решения принимает единый центр, которому не с кем конфликтовать). Если все абоненты очень активны и заявки на передачу поступают интенсивно, то все они будут передавать строго по очереди. Но центр должен быть исключительно надежен, иначе будет парализован весь обмен. Механизм управления не слишком гибок, так как центр работает по жестко заданному алгоритму. К тому же скорость управления невысока. Ведь даже в случае, когда все время передает только один абонент, ему все равно приходится ждать после каждого переданного пакета, пока центр опросит всех остальных абонентов.

 

2. Управление обменом в сети с топологией «шина»

В принципе при топологии «шина» возможно точно такое же централизованное управление, как и в случае звезды. При этом один из абонентов ( центральный ) посылает всем остальным («периферийным») запросы, кто из них хочет передать, затем разрешает передачу одному из абонентов. После окончания передачи передававший абонент сообщает «центру», что он закончил передачу, и «центр» снова начинает опрос. Все преимущества и недостатки такого управления - те же самые, что и в случае звезды. Единственное отличие состоит в том, что центр здесь не пересылает информацию от одного абонента к другому, как в топологии «активная звезда», а только управляет обменом.

Однако гораздо чаще в шине используется децентрализованное случайное управление, так как все сетевые адаптеры всех абонентов в данном случае одинаковы. При выборе децентрализованного управления все абоненты также имеют равные права доступа к сети, то есть особенности топологии совпадают с особенностями метода управления. Решение о том, когда можно передавать свой пакет, принимается каждым абонентом на месте, исходя только из анализа состояния сети. В данном случае суще­ствует конкуренция между абонентами за захват сети и, следовательно, возможны конфликты между ними и искажения передаваемых данных из-за наложения пакетов.

Существует множество алгоритмов доступа или, как еще говорят, сценариев доступа, порой очень сложных. Их выбор зависит от скорости передачи в сети, от длины шины, загруженности сети (интенсивности обмена или графика сети), от используемого кода передачи. Отметим, что иногда для управления доступом к шине используется дополнительная линия связи, что упрощает аппаратуру контроллеров и методы доступа, но обыч­но заметно увеличивает стоимость сети в целом за счет удвоения длины кабеля и количества приемопередатчиков. Поэтому данное решение не получило широкого распространения.
Суть всех случайных методов управления обменом довольно проста. Пока сеть занята, то есть по ней идет передача пакета, абонент, желающий пе­редавать, ждет освобождения сети. Ведь в противном случае неминуемо исказятся и пропадут оба пакета. После освобождения сети абонент, желающий передавать, начинает свою передачу. Если одновременно с ним начали передачу еще несколько абонентов, то возникает коллизия (конфликт, столкновение пакетов). Конфликт этот детектируется всеми або­нентами, передача прекращается, и через некоторое время предпринимается повторная попытка передачи. При этом не исключены повторные коллизии и новые попытки передать свой пакет. И так продолжается до тех пор, пока пакет не будет передан без коллизий.

Существует несколько разновидностей случайных методов управления обменом. В некоторых из них не все передающие абоненты распознают коллизию, а только те, которые имеют меньшие приоритеты. Абонент с максимальным приоритетом из всех, начавших передачу, закончит передачу своего пакета без ошибок. В некоторых случайных методах управления обменом каждый абонент начинает свою передачу после освобождения сети не сразу, а выдержав свою, строго индивидуальную задержку. Максимальным приоритетом будет обладать абонент с минимальной задержкой. Но хотя в обоих случаях имеется система приоритетов, методы все-таки относятся к случайным, так как исход конкуренции невозможно предсказать.

Чаще всего система приоритетов отсутствует полностью, и после обнаружения коллизии абоненты выбирают задержку до следующей попытки передачи по случайному закону. Именно так работает стандартный метод управления обменом CSMA/CD (Carrier Sense Multiple Access with Collision Detection), используемый в самой популярной сети Ethernet. Его главное достоинство в том, что все абоненты полностью равноправны, и ни один из них не может надолго заблокировать обмен другому (как в случае наличия приоритетов). Подробнее метод CSMA/CD будет рассмотрен в специальной главе.

Понятно, что все подобные методы будут хорошо работать только при не слишком большой интенсивности обмена по сети. Считается, что приемлемое качество связи обеспечивается только при нагрузке не выше 30-40% (то есть сеть занята не более 30-40% всего времени). При большей нагрузке становятся слишком частыми повторные столкновения, и наступает так называемый коллапс, или крах сети, представляющий собой резкое падение ее производительности. Недостаток всех подобных методов еще и в том, что они не гарантируют величину времени доступа к сети, которая зависит не только от выбора задержки между попытками передачи, но и от общей загруженности сети. Поэтому, например, в сетях, выполняющих задачи управления оборудованием (на производстве, в научных лабораториях), где требуется быстрая реакция на внешние события, сети со случайными методами управления используются довольно редко.

При любом случайном методе управления обменом возникает вопрос о том, какой должна быть минимальная длительность пакета, чтобы коллизию обнаружили все начавшие передавать абоненты. Ведь сигнал по любой физической среде распространяется не мгновенно, и при больших размерах сети (как еще говорят, при большом диаметре сети) задержка распространения может составлять десятки и сотни микросекунд, и информацию об одновременно происходящих событиях разные абоненты получают не одновременно. Чтобы ответить на этот вопрос, обратимся к рис. 3.7.

Пусть L ~ полная длина сети, V - скорость распространения сигнала в используемом кабеле. Допустим, абонент 1 закончил свою передачу, а абоненты 2 и 3 захотели передавать во время передачи абонента 1. После освобождения сети абонент 3 узнает об этом событии и начинает свою передачу через временной интервал прохождения сигнала по всей длине сети, то есть через время L/V, а абонент 2 начнет передавать сразу после освобождения сети. Пакет от абонента 3 дойдет до абонента 2 еще через временной интервал L/V после начала передачи абонентом 3 (обратный путь сигнала). К этому моменту передача пакета абонентом 2 ни в коем случае не должна еще закончиться, иначе абонент 2 так и не узнает о стол­кновении пакетов (о коллизии).

Поэтому получается, что минимально допустимая длительность пакета и сети должна составлять 2L/V, то есть должна равняться удвоенному времени распространения сигнала по полной длине сети (или по пути наибольшей длины в сети). Это время называется двойным или круговым временем задержки сигнала в сети, или PDV (Path Delay Value). Отметим, что этот же временной интервал можно рассматривать как универсальную меру одновременности любых событий в сети.

Отдельно стоит остановиться на том, как сетевые адаптеры распознают коллизию, то есть столкновение пакетов. Ведь простое сравнение передаваемой абонентом информации с той, которая реально присутствует в сети, возможно только в случае самого простого кода NRZ, используемого довольно редко. При применении кода Манчестер-2, который обычно подразумевается в случае метода управления обменом CSMA/CD, требуется принципиально другой подход.

Как уже отмечалось, сигнал в коде Манчестер-2 всегда имеет постоянную составляющую, равную половине размаха сигнала (если один из двух уровней сигнала нулевой). Однако в случае столкновения двух и более пакетов (коллизии) это правило выполняться не будет. Постоянная составляющая суммарного сигнала в сети будет обязательно больше или мень­ше половины размаха (рис. 3.8). Ведь пакеты всегда отличаются друг от друга и к тому же сдвинуты друг относительно друга во времени. Именно по выходу уровня постоянной составляющей за установленные пределы и определяет каждый сетевой адаптер наличие коллизии в сети.

 

3. Управление обменом в сети с топологией кольцо

Кольцевая топология имеет свои особенности при выборе метода управления обменом. В этом случае важно то, что любой пакет, посланный по кольцу, последовательно пройдя всех абонентов, через некоторое время возвратится в ту же точку, к тому же абоненту (так как топология замкнутая), то есть нет одновременного распространения сигнала в две стороны, как в топологии «шина». Отметим, что сети с топологией «кольцо» бывают однонаправленными и двунаправленными. Мы будем здесь рас­сматривать только однонаправленные, как более распространенные.

В принципе, в сети с топологией «кольцо» можно использовать различные централизованные методы управления (как в звезде), можно применять также методы случайного доступа (как в шине), но чаще выбирают все-таки специфические методы управления, в наибольшей степени соответствующие именно особенностям кольца. Наиболее популярны в этом случае маркерные (эстафетные) методы управления, то есть те, которые используют маркер (эстафету) - небольшой управляющий пакет специального вида. Именно эстафетная передача маркера по кольцу позволяет передавать право на захват сети от одного абонента к другому. Маркерные методы относятся к децентрализованным и детерминированным методам управления обменом в сети. В них нет явно выраженного центра, но существует четкая система приоритетов, и потому не бывает конфликтов.
Рассмотрим работу маркерного метода управления в сети с топологией кольцо (рис. 3.9).

По кольцу непрерывно ходит специальный пакет, маркер, предоставляющий абонентам право передавать свой пакет. Алгоритм действий абонентов включает в себя следующее:

1. Абонент 1, желающий передать свой пакет, должен дождаться прихода к нему свободного маркера. Затем он присоединяет к маркеру свой пакет, помечает маркер как занятый и отправляет эту посылку следующему по кольцу абоненту.
2. Все остальные абоненты (2, 3, 4), получив маркер с присоединенным пакетом, проверяют, им ли адресован пакет. Если пакет адресован не им, то они передают полученную посылку (маркер + пакет) дальше по кольцу.
3. Если какой-то абонент (в нашем случае это будет абонент 3) распознает пакет как адресованный ему, то он принимает этот пакет, устанавливает в маркере бит подтверждения приема и передает посылку (маркер + пакет) дальше по кольцу.
4. Передававший абонент 1 получает свою посылку, прошед­шую по всему кольцу, обратно, помечает маркер как свобод­ный, удаляет из сети свой пакет и посылает свободный маркер дальше по кольцу. Абонент, желающий передавать, ждет этого маркера, и все повторяется снова.

Приоритет при данном методе управления получается географический, то есть право передачи после освобождения сети переходит к следующему по направлению кольца абоненту от последнего передававшего абонента. Но эта система приоритетов работает только при большой интен­сивности обмена. При малой интенсивности обмена все абоненты равноправны, и время доступа к сети каждого из них определяется толь­ко положением маркера в момент возникновения заявки на передачу.

В чем-то рассматриваемый метод похож на метод опроса (централизованный), хотя явно выделенного центра здесь не существует. Однако некоторый центр обычно все-таки должен присутствовать: один из абонентов (или специальное устройство) должен следить, чтобы маркер не потерялся в процессе прохождения по кольцу (например, из-за действия помех или сбоя в работе какого-то абонента). В противном случае механизм доступа работать не будет. Следовательно, надежность управления в данном случае снижается (выход центра из строя приводит к полной дезорганизации обмена), поэтому обычно применяются специальные средства для повышения надежности, восстановления центра контроля за маркером.

Основное преимущество данного метода перед CSMA/CD состоит в том, что здесь гарантирована величина времени доступа. Его величина составит (N - 1) • tпк, где N - полное число абонентов в сети, tпк - время прохождения пакета по кольцу. Вообще маркерный метод управления обме­ном гораздо эффективнее случайных методов при большой интенсивнос­ти обмена в сети (при загруженности более 30-40%). Он позволяет сети работать с большей нагрузкой, которая теоретически может приближать­ся к 100%.

Метод маркерного доступа может использоваться не только в кольце на­пример, в сети IBM Token Ring или FDDI, но и в шине (например, сеть Arcnet-BUS), и в пассивной звезде (например, сеть Arcnet-STAR). В этих случаях реализуется не физическое, а логическое кольцо, то есть все абоненты, последовательно передают друг другу маркер, и эта цепочка передачи маркеров замкнута в кольцо. При этом совмещаются достоинства физической топологии «шина» и маркерного метода управления.

Просмотров: 24174

Вернуться воглавление




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.