Как уже отмечалось, любые электрические линии связи требуют принятия специальных мер, без которых невозможна не только безошибочная передача данных, но и любое функционирование сети. Оптоволоконные кабели решают все подобные проблемы автоматически.
Согласование электрических линий связи применяется для обеспечения нормального прохождения сигнала по длинной линии без отражений и искажений. Принцип согласования очень прост: на концах кабеля необходимо установить согласующие резисторы (терминаторы) с сопротивлением, равным волновому сопротивлению используемого кабеля.
Волновое сопротивление - это параметр данного типа кабеля, зависящий только от его устройства (сечения, количества и формы проводников, толщины и материала изоляции и т.д.). Величина волнового сопротивления обязательно указывается в документации на кабель и составляет обычно от 50-100 Ом для коаксиального кабеля до 100-150 Ом для витой пары или плоского многопроводного кабеля. Точное значение волнового сопротивления легко можно измерить с помощью генератора импульсов и осциллографа по отсутствию искажения формы передаваемого по кабелю импульса. Обычно требуется, чтобы отклонение величины согласующего резистора не превышало 5-10% в ту или другую сторону.
Если согласующее сопротивление Rн меньше волнового сопротивления кабеля Rв, то фронт передаваемого прямоугольного импульса на приемном конце будет затянут, если же Rн больше Rв, то на фронте будет колебательный процесс (рис. 2.4).
Надо сказать, что сетевые адаптеры, их приемники и передатчики специально рассчитываются на работу с данным типом кабеля с известным волновым сопротивлением. Поэтому даже при идеально согласованном на концах кабеле, волновое сопротивление которого существенно отличается от стандартного, сеть, скорее всего, работать не будет или будет работать со сбоями.
Здесь же стоит упомянуть о том, что сигналы с пологими фронтами передаются по длинному электрическому кабелю лучше, чем сигналы с крутыми фронтами, то есть их форма меньше искажается (рис. 2.5). Это связано с разницей величин затухания для разных частот (высокие частоты затухают сильнее). Меньше всего искажается форма синусоидального сигнала, такой сигнал просто уменьшается по амплитуде. Поэтому для улучшения качества передачи нередко используются трапециевидные или колоколообразные импульсы (рис. 2.6), близкие по форме к полуволне синуса, для чего искусственно затягиваются или сглаживаются фронты изначальных прямоугольных сигналов.
Экранирование электрических линий связи применяется для снижения влияния на кабель внешних электромагнитных полей. Экран представляет собой медную или алюминиевую оболочку (плетеную или из фольги), в которую заключаются провода кабеля. Для того чтобы экранирование работало, экран обязательно должен быть заземлен - в этом случае наведенные на него токи стекают на землю. Экран заметно увеличивает стоимость кабеля, но в то же время повышает его механическую прочность.
Снизить влияние наведенных помех можно и без экрана, если использовать дифференциальную передачу сигнала (рис. 2.7). В этом случае передача идет по двум проводам, оба они являются сигнальными. Передатчик формирует противофазные сигналы, а приемник реагирует на разность сигналов на обоих проводах. Условием согласования является равенство сопротивлений согласующих резисторов половине волнового сопротивления кабеля. Если оба провода имеют одинаковую длину и проложены рядом (в одном кабеле), то помехи действуют на оба провода примерно одинаково, и разностный сигнал между проводами практически не искажается. Именно такая дифференциальная передача применяется обычно в кабелях из витых пар. Но экранирование и в этом случае существенно улучшает помехоустойчивость.
Гальваническая развязка компьютеров от сети при использовании электрического кабеля совершенно необходима. Дело в том, что по электрическим кабелям (как по сигнальным проводам, так и по экрану) могут идти не только информационные сигналы, но и так называемый выравнивающий ток, возникающий вследствие не идеальности заземления компьютеров.
Когда компьютер не заземлен, на его корпусе образуется наведенный потенциал около 110 В переменного тока (половина питающего напряжения). Его можно ощутить на себе, если одной рукой взяться за корпус компьютера, а другой за батарею центрального отопления или за какой-нибудь заземленный прибор.
При автономной работе компьютера (например, дома) отсутствие заземления, как правило, не оказывает серьезного влияния на его работу. Правда, иногда может увеличиться количество сбоев в работе компьютера. Но при соединении нескольких территориально разнесенных компьютеров электрическим кабелем заземление становится серьезной проблемой. Если один из соединяемых компьютеров заземлен, а другой не заземлен, то возможен даже полный выход из строя одного из них или обоих.
Поэтому компьютеры крайне желательно заземлять. В случае использования трех контактной вилки и розетки, в которых есть нулевой провод, это получается автоматически. При двух контактной вилке и розетке необходимо принимать специальные меры, организовывать заземление отдельным проводом большого сечения. Стоит также отметить, что в случае трехфазной сети желательно обеспечить питание всех компьютеров от одной фазы.
Но проблема осложняется еще и тем, что «земля», к которой присоединяются компьютеры, обычно далека от идеала. В идеале заземляющие провода компьютеров должны сходиться в одной точке, соединенной короткой массивной шиной с зарытым в землю массивным проводником. Такая ситуация возможна только тогда, когда компьютеры не слишком разнесены, а заземление действительно сделано грамотно. Обычно же заземляющая шина имеет значительную длину, в результате чего стекающие по ней токи создают значительную разность потенциалов между ее отдельными точками. Особенно велика эта разность потенциалов в случае подключения к шине мощных и высокочастотных потребителей энергии. Поэтому даже присоединенные к одной и той же шине, но в разных точках, компьютеры имеют на своих корпусах разные потенциалы (рис. 2.8). В результате по электрическому кабелю, соединяющему компьютеры, течет выравнивающий ток (переменный с высокочастотными составляющими).
Ситуация ухудшается, когда компьютеры подключаются к разным шинам заземления. Выравнивающий ток может достигать в этом случае величины в несколько ампер. Понятно, что подобные токи смертельно опасны для малосигнальных узлов компьютера. В любом случае выравнивающий ток существенно влияет на передаваемый сигнал, порой полностью забивая его. Даже тогда, когда сигналы передаются без участия экрана (например, по двум проводам, заключенным в экран), выравнивающий ток, вследствие индуктивного действия, мешает передаче информации. Именно поэтому экран всегда должен быть заземлен только в одной-единственной точке.
Грамотное соединение компьютеров электрическим кабелем обязательно должно включать (рис. 2.9):
• оконечное согласование кабеля;
• гальваническую развязку компьютеров от сети (обычно трансформаторная гальваническая развязка входит в состав каждого сетевого адаптера);
• заземление каждого компьютера;
• заземление экрана (если, конечно, он есть) в одной-единственной точке.
Не стоит пренебрегать ни одним из этих требований. Например, гальваническая развязка сетевых адаптеров часто рассчитывается на допустимое напряжение изоляции всего лишь 100 В, что при отсутствии заземления одного из компьютеров может легко привести к выходу из строя его адаптера.
Отметим, что для присоединения коаксиального кабеля обычно применяются разъемы в металлическом корпусе. Этот корпус не должен соединяться ни с корпусом компьютера, ни с «землей» (на плате адаптера он установлен с пластиковой изоляцией от крепежной планки). Заземление экрана кабеля сети лучше производить не через корпус компьютера, а отдельным специальным проводом, что обеспечивает лучшую надежность. Пластмассовые корпуса разъемов RJ-45 для кабелей с неэкранированными витыми парами снимают эту проблему.
При заземлении экрана в одной точке он становится штыревой антенной с заземленным основанием и может усиливать ВЧ - помехи на нескольких частотах, кратных его длине. Для уменьшения этого «антенного» эффекта используют многоточечное заземление по высокой частоте, т.е. в одной точке экран соединяется с «землей» накоротко, а в остальных точках - через высоковольтные керамические конденсаторы. В простейшем случае на одном конце кабеля экран соединяется с землей непосредственно, на другом конце - через емкость.