русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Реляционные базы данных. Основные понятия, свойства отношений, модель данных, реляционные операции и вычисления. Базовые понятия реляционных баз данных

Основными понятиями реляционных баз данных являются тип данных, домен, атрибут, кортеж, первичный ключ и отношение. Покажем смысл этих понятий на примере отношения СОТРУДНИКИ,содержащего информацию о сотрудниках некоторой организации:

 

1. Тип данных

Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение символьных, числовых данных, битовых строк, специализированных числовых данных (таких как "деньги"), а также специальных "темпоральных" данных (дата, время, временной интервал). Достаточно активно развивается подход к расширению возможностей реляционных систем абстрактными типами данных (соответствующими возможностями обладают, например, системы семейства Ingres/Postgres). В нашем примере мы имеем дело с данными трех типов: строки символов, целые числа и "деньги".

 

2. Домен

Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с подтипами в некоторых языках программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат "истина", то элемент данных является элементом домена. Наиболее правильной интуитивной трактовкой понятия домена является понимание домена как допустимого потенциального множества значений данного типа. Например, домен "Имена" в нашем примере определен на базовом типе строк символов, но в число его значений могут входить только те строки, которые могут изображать имя (в частности, такие строки не могут начинаться с мягкого знака). Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов "Номера пропусков" и "Номера групп" относятся к типу целых чисел, но не являются сравнимыми. Заметим, что в большинстве реляционных СУБД понятие домена не используется, хотя в Oracle V.7 оно уже поддерживается.

 

3. Схема отношения, схема базы данных

Схема отношения - это именованное множество пар {имя атрибута, имя домена (или типа, если понятие домена не поддерживается)}. Степень или "арность" схемы отношения - мощность этого множества. Степень отношения СОТРУДНИКИ равна четырем, то есть оно является 4-арным. Если все атрибуты одного отношения определены на разных доменах, осмысленно использовать для именования атрибутов имена соответствующих доменов (не забывая, конечно, о том, что это является всего лишь удобным способом именования и не устраняет различия между понятиями домена и атрибута). Схема БД (в структурном смысле) - это набор именованных схем отношений.

 

4. Кортеж, отношение

Кортеж, соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "Значение" является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым, степень или "арность" кортежа, т.е. число элементов в нем, совпадает с "арностью" соответствующей схемы отношения. Попросту говоря, кортеж - это набор именованных значений заданного типа.
Отношение - это множество кортежей, соответствующих одной схеме отношения. Иногда, чтобы не путаться, говорят "отношение-схема" и "отношение-экземпляр", иногда схему отношения называют заголовком отношения, а отношение как набор кортежей - телом отношения. На самом деле, понятие схемы отношения ближе всего к понятию структурного типа данных в языках программирования. Было бы вполне логично разрешать отдельно определять схему отношения, а затем одно или несколько отношений с данной схемой.
Обычным житейским представлением отношения является таблица, заголовком которой является схема отношения, а строками - кортежи отношения-экземпляра; в этом случае имена атрибутов именуют столбцы этой таблицы. Поэтому иногда говорят "столбец таблицы", имея в виду "атрибут отношения". Реляционная база данных - это набор отношений, имена которых совпадают с именами схем отношений в схеме БД.

 

Фундаментальные свойства отношений

1.Отсутствие кортежей-дубликатов

То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различных элементов. Из этого свойства вытекает наличие у каждого отношения так называемого первичного ключа - набора атрибутов, значения которых однозначно определяют кортеж отношения. Для каждого отношения по крайней мере полный набор его атрибутов обладает этим свойством. Однако при формальном определении первичного ключа требуется обеспечение его "минимальности", т.е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства - однозначно определять кортеж. Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных.

2. Отсутствие упорядоченности кортежей

Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве кортежей отношения дает дополнительную гибкость СУБД при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, не отношение, а некоторый упорядоченный список кортежей.

3. Отсутствие упорядоченности атрибутов

Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута, имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Это свойство теоретически позволяет, например, модифицировать схемы существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих атрибутов. Однако в большинстве существующих систем такая возможность не допускается, и хотя упорядоченность набора атрибутов отношения явно не требуется, часто в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения.

4. Атомарность значений атрибутов.

Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества значений (отношения). Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения или отношения, представленные в первой нормальной форме
Реляционная модель данных. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части. В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение. В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка.

Целостность сущности и ссылок. Наконец, в целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений. Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений.

Реляционные операции и счисление.

Предложив реляционную модель данных, Э.Ф.Кодд создал и инструмент для удобной работы с отношениями – реляционную алгебру. Каждая операция этой алгебры использует одну или несколько таблиц (отношений) в качестве ее операндов и продуцирует в результате новую таблицу, т.е. позволяет "разрезать" или "склеивать" таблицы (рис. 3.3).
Рис. 3.3. Некоторые операции реляционной алгебры
Созданы языки манипулирования данными, позволяющие реализовать все операции реляционной алгебры и практически любые их сочетания. Среди них наиболее распространены SQL (Structured Query Language – структуризованный язык запросов) и QBE (Quere-By-Example – запросы по образцу) [3, 5]. Оба относятся к языкам очень высокого уровня, с помощью которых пользователь указывает, какие данные необходимо получить, не уточняя процедуру их получения. С помощью единственного запроса на любом из этих языков можно соединить несколько таблиц во временную таблицу и вырезать из нее требуемые строки и столбцы (селекция и проекция).

Просмотров: 24734

Вернуться в оглавление:Шпаргалки по компьютеру




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.