русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Локальная сеть Ethernet. Топологии, стандарты, доступ к сети, структура кадров, расчет производительности, коллизии, домен коллизий и организация работы сети

Технология Ethernet (802.3)Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. В стандарте IEEE 802.3 различаются уровни MAC и LLC. В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - l0Base-5, l0Base-T, l0Base-FL, l0Base-FB. В 1995 году был принят стандарт Fast Ethernet, который во многом не является самостоятельным стандартом (802.3u). Аналогично, принятый в 1998 году стандарт Gigabit Ethernet описан в разделе 802.3z основного документа. Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код. Все виды стандартов Ethernet используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.

Метод доступа CSMA/CD В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD). Этот метод применяется исключительно в сетях с логической общей шиной. Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину.

Возникновение коллизии. При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации. Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности скорейшего обнаружения коллизии всеми станциями сети станция, которая обнаружила коллизию, прерывает передачу своего кадра и усиливает ситуацию коллизии посылкой в сеть специальной последовательности из 32 бит, называемой jam-последовательностью.После этого обнаружившая коллизию передающая станция обязана прекратить передачу и сделать паузу в течение короткого случайного интервала времени. Затем она может снова предпринять попытку захвата среды и передачи кадра. Если 16 последовательных попыток передачи кадра вызывают коллизию, то передатчик должен прекратить попытки и отбросить этот кадр.

Время двойного оборота и распознавание коллизий

Четкое распознавание коллизий всеми станциями сети является необходимым условием корректной работы сети Ethernet. Для надежного распознавания коллизий должно выполняться следующее соотношение: Tmin >=PDV, где Тmin - время передачи кадра минимальной длины, a PDV - время, за которое сигнал коллизии успевает распространиться до самого дальнего узла сети. Так как в худшем случае сигнал должен пройти дважды между наиболее удаленными друг от друга станциями сети (в одну сторону проходит неискаженный сигнал, а на обратном пути распространяется уже искаженный коллизией сигнал), то это время называется временем двойного оборота (Path Delay Value, PDV).

Максимальная производительность сети Ethernet

Используя параметры сети Ethernet рассчитаем максимальную производительность сегмента Ethernet в таких единицах, как число переданных кадров минимальной длины в секунду. Для расчета максимального количества кадров минимальной длины, проходящих по сегменту Ethernet, заметим, что размер кадра минимальной длины вместе с преамбулой составляет 72 байт или 576 бит, поэтому на его передачу затрачивается 57,5 мкс. Прибавив межкадровый интервал в 9,6 мкс, получаем, что период следования кадров минимальной длины составляет 67,1 мкс. Отсюда максимально возможная пропускная способность сегмента Ethernet составляет 14 880 кадр/с. Кадры максимальной длины технологии Ethernet имеют длину с преамбулой составляет 1526 байт или 12 208 бит. Максимально возможная пропускная способность 813 кадр/с. Под полезной пропускной способностью протокола понимается скорость передачи пользовательских данных, которые переносятся полем данных кадра. Эта пропускная способность всегда меньше номинальной битовой скорости протокола Ethernet за счет нескольких факторов: служебной информации кадра, межкадровых интервалов (IPG), ожидания доступа к среде. Для кадров минимальной длины полезная пропускная способность равна:
СП =14880 * 46 *8 = 5,48 Мбит/с.
Для кадров максимальной длины полезная пропускная способность равна:
СП = 813 *1500 * 8 =9,76 Мбит/с,

Форматы кадров технологии Ethernet

Стандарт технологии Ethernet, описанный в документе IEEE 802.3, дает описание единственного формата кадра уровня MAC. Так как в кадр уровня MAC должен вкладываться кадр уровня LLC, описанный в документе IEEE 802.2, то по стандартам IEEE в сети Ethernet может использоваться только единственный вариант кадра канального уровня, заголовок которого является комбинацией заголовков MAC и LLC подуровней. Тем не менее на практике в сетях Ethernet на канальном уровне используются кадры 4-х различных форматов (типов). Это связано с длительной историей развития технологии Ethernet, насчитывающей период существования до принятия стандартов IEEE 802, когда подуровень LLC не выделялся из общего протокола и, соответственно, заголовок LLC не применялся. Ниже приводится описание всех четырех типов кадров Ethernet (здесь под кадром понимается весь набор полей, которые относятся к канальному уровню, то есть поля MAC и LLC уровней).Один и тот же тип кадра может иметь разные названия, поэтому ниже для каждого типа кадра приведено по нескольку наиболее употребительных названий:
кадр 802.3/LLC (кадр 802.3/802.2 или кадр Novell 802.2);кадр Raw 802.3 (или кадр Novell 802.3);кадр Ethernet DIX (или кадр Ethernet II);
кадр Ethernet SNAP.
Кадр 802.3/LLC
Заголовок кадра 802.3/LLC является результатом объединения полей заголовков кадров, определенных в стандартах IEEE 802.3 и 802.2.Стандарт 802.3 определяет восемь полей заголовка (рис. 3.6; поле преамбулы и начальный ограничитель кадра на рисунке не показаны).Поле преамбулы (Preamble) состоит из семи синхронизирующих байт 10101010. При манчестерском кодировании эта комбинация представляется в физической среде периодическим волновым сигналом с частотой 5 МГц. Начальный ограничитель кадра (Start-of-frame-delimiter, SFD) состоит из одного байта 10101011. Появление этой комбинации бит является указанием на то, что следующий байт - это первый байт заголовка кадра. Адрес назначения (Destination Address, DA) может быть длиной 2 или 6 байт. На практике всегда используются адреса из 6 байт. Первый бит старшего байта адреса назначения является признаком того, является адрес индивидуальным или групповым. Если он равен 0, то адрес является индивидуальным (unicast), a если 1, то это групповой адрес (multicast).Адрес источника (Source Address, SA) - это 2- или 6-байтовое поле, содержащее адрес узла - отправителя кадра. Первый бит адреса всегда имеет значение 0.Длина (Length, L) - 2-байтовое поле, которое определяет длину поля данных в кадре. Поле данных (Data) может содержать от 0 до 1500 байт. Но если длина поля меньше 46 байт, то используется следующее поле - поле заполнения, - чтобы дополнить кадр до минимально допустимого значения в 46 байт. Поле заполнения (Padding) состоит из такого количества байт заполнителей, которое обеспечивает минимальную длину поля данных в 46 байт. Это обеспечивает корректную работу механизма обнаружения коллизий. Если длина поля данных достаточна, то поле заполнения в кадре не появляется. Поле контрольной суммы (Frame Check Sequence, FCS) состоит из 4 байт, содержащих контрольную сумму. Это значение вычисляется по алгоритму CRC-32. После получения кадра рабочая станция выполняет собственное вычисление контрольной суммы для этого кадра, сравнивает полученное значение со значением поля контрольной суммы и, таким образом, определяет, не искажен ли полученный кадр.
Спецификации физической среды Ethernet
Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0,5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных. Метод доступа CSMA/CD и все временные параметры остаются одними и теми же для любой спецификации физической среды технологии Ethernet 10 Мбит/с.
Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных:
l0Base-5 - коаксиальный кабель диаметром 0,5 дюйма, называемый «толстым» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей). Кабель используется как моноканал для всех станций. Сегмент кабеля имеет максимальную длину 500 м (без повторителей) и должен иметь на концах согласующие терминаторы сопротивлением 50 Ом, поглощающие распространяющиеся по кабелю сигналы и препятствующие возникновению отраженных сигналов. При отсутствии терминаторов («заглушек») в кабеле возникают стоячие волны, так что одни узлы получают мощные сигналы, а другие - настолько слабые, что их прием становится невозможным.
Станция должна подключаться к кабелю при помощи приемопередатчика - трансивера (transmitter+Teceiver = transceiver). Трансивер устанавливается непосредственно на кабеле и питается от сетевого адаптера компьютера. Трансивер может подсоединяться к кабелю как методом прокалывания, обеспечивающим непосредственный физический контакт, так и бесконтактным методом.
l0Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию на основе концентратора. Расстояние между концентратором и конечным узлом - не более 100 м. Конечные узлы соединяются по топологии «точка-точка» со специальным устройством - многопортовым повторителем с помощью двух витых пар. Одна витая пара требуется для передачи данных от станции к повторителю (выход Тх сетевого адаптера), а другая - для передачи данных от повторителя к станции (вход Rх сетевого адаптера). На рис. 3.10 показан пример трехпортового повторителя. Повторитель принимает сигналы от одного из конечных узлов и синхронно передает их на все свои остальные порты, кроме того, с которого поступили сигналы.
Рис. 3.10. Сеть стандарта 10Bаse-T: Тх - передатчик; Rх - приемник
Многопортовые повторители в данном случае обычно называются концентраторами (англоязычные термины - hub или concentrator). Концентратор осуществляет функции повторителя сигналов на всех отрезках витых пар, подключенных к его портам, так что образуется единая среда передачи данных - логический моноканал (логическая общая шина). Повторитель обнаруживает коллизию в сегменте в случае одновременной передачи сигналов по нескольким своим Rх -входам и посылает jam-последовательность на все свои Тх - выходы. Концентраторы 10Base-T можно соединять друг с другом с помощью тех же портов, которые предназначены для подключения конечных узлов.Для обеспечения синхронизации станций при реализации процедур доступа CSMA/CD и надежного распознавания станциями коллизий в стандарте определено максимально число концентраторов между любыми двумя станциями сети, а именно 4. Это правило носит название «правила 4-х хабов» и оно заменяет «правило 5-4-3», применяемое к коаксиальным сетям. Общее количество станций в сети 10Base-T не должно превышать  предела в 1024.
l0Base-F - волоконно-оптический кабель. Топология аналогична топологии стандарта l0Base-T. Имеется несколько вариантов этой спецификации - FOIRL (расстояние до 1000 м), l0Base-FL (расстояние до 2000 м), l0Base-FB (расстояние до 2000 м).

Домен коллизий. В технологии Ethernet, независимо от применяемого стандарта физического уровня, существует понятие домена коллизий. Домен коллизий (collision domain) - это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части этой сети коллизия возникла. Сеть Ethernet, построенная на повторителях, всегда образует один домен коллизий. Домен коллизий соответствует одной разделяемой среде. Мосты, коммутаторы и маршрутизаторы делят сеть Ethernet на несколько доменов коллизий.

Методика расчета конфигурации сети Ethernet. Соблюдение многочисленных ограничений, установленных для различных стандартов физического уровня сетей Ethernet, гарантирует корректную работу сети (естественно, при исправном состоянии всех элементов физического уровня).Наиболее часто приходится проверять ограничения, связанные с длиной отдельного сегмента кабеля, а также количеством повторителей и общей длиной сети.Чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо выполнение четырех основных условий: - количество станций в сети не более 1024; - максимальная длина каждого физического сегмента не более величины, определенной в соответствующем стандарте физического уровня;- время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала; - сокращение межкадрового интервала IPG (Path Variability Value, PW) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала. Так как при отправке кадров конечные узлы обеспечивают начальное межкадровое расстояние в 96 битовых интервала, то после прохождения повторителя оно должно быть не меньше, чем 96 - 49 = 47 битовых интервала.

Просмотров: 12629

Вернуться в оглавление:Шпаргалки по компьютеру




Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.