Средства и системы автоматизированного конструирования, отличаясь принципами построения, способами реализации своих функций, степенью автоматизации и режимами использования, обеспечивают следующие методы конструирования:
а) автоматизацию подготовки выпуска конструкторской документации по «ручным» эскизам, введенным в систему средствами цифрового преобразования графической информации;
б) автоматическое конструирование;
в) интерактивное конструирование;
г) автоинтерактивное конструирование
Методы а), в) и г) называют «автоматизированными» методами конструирования.
Выбор методов автоматизированного конструирования зависит от разных факторов, но во многом определяется базовыми техническими средствами.
Реализация метода б) чаще всего осуществляется на базе средних и больших ЭВМ типа ЕС 1033, ЕС 1045, ЕС 1061, БЭСМ-6. Для метода а) достаточно малой или микроЭВМ, оснащенной периферийными устройствами ввода, редактирования и вывода текстовой и графической документации.
Методы в) и г) обычно реализуются на автоматизированных рабочих местах, рабочих инженерных станциях, интеллектуальных рабочих станциях, диалоговых вычислительных комплексах на базе малых и микроЭВМ, имеющих средства оперативного взаимодействия на текстовом и графическом уровнях.
Автоматический метод решения конструкторских задач в режиме пакетной обработки наиболее эффективен и целесообразен для следующих задач:
A1. Задачи, на решение которых требуются большие затраты машинного времени.
А2. Задачи, при решении которых практически не требуется ни наблюдения за ходом, ни вмешательства в процессе решения.
A3. Задачи, результаты решения которых представляют собой числовой или текстовой материал, удобный для чтения и просмотра.
Результаты решения этих задач могут выводиться на алфавитно-цифровые печатающие устройства и графопостроители.
Трудности формализации процессов конструирования МЭА и исключение конструкторов из технологического цикла автоматизированного проектирования часто делают нецелесообразным создание автоматических систем проектирования. По мере развития вычислительной техники, теории и методов автоматизации конструирования такие системы для определенных видов конструкций МЭА могут стать эффективными.
Быстрое и широкое распространение в 80-е годы малых ЭВМ, микроЭВМ, микропроцессорной техники, дисплейных средств, устройств ввода и вывода графической информации создало предпосылки для разработки и внедрения в практику конструирования МЭА интерактивных методов.
В интерактивном режиме проектирования с помощью дисплейных средств наиболее эффективно и целесообразно решаются следующие задачи:
Б1. Задачи, в которых важно визуальное, изобразительное или графическое представление вводимых или выводимых данных.
Б2. Задачи, время решения которых мало (несколько минут).
БЗ. Задачи, требующие небольшого количества входных данных, вводимых с графического дисплея
Б4. Задачи, в процессе решения которых важны оценка результатов, принятие решения и вмешательство конструктора-оператора в режиме оперативного взаимодействия в процесс решения с помощью дисплейных средств
При автоматизированном конструировании МЭА часто требуется решать задачи со свойствами, характерными одновременно А1 и Б1, А1 и БЗ и др. При решении таких задач не дает положительного эффекта ни метод б), ни метод в). Для решения этой проблемы предложен и разработан авто интерактивный метод конструирования на базе технических средств АРМ.
Автоинтерактивный режим представляет собой специально организованное, в рамках непрерывного технологического процесса автоматизированного конструирования, сочетание в любых последовательностях и пропорциях автоматических вычислений по программам, реализующим типовые (стандартные) проектные процедуры, и взаимодействий конструктора- оператора с системой в интерактивном режиме для разрешения не формализуемых задач, оценки результатов, принятия решений и директивных указаний по режимам и условиям дальнейшего конструирования.
При реализации автоинтерактивного режима конструирования микроэлектронных блоков средствами АРМ на базе СМ ЭВМ заложены следующие принципы.
В автоинтерактивном режиме конструирования возможны задание, получение и выбор наилучшего решения (по формализованным, неформализованным и визуальным критериям) из определенного множества вариантов, рассчитываемых в автоматическом режиме, т. е. возможно многовариантное конструирование.
Автоинтерактивный режим позволяет не накапливать неразрешимые в автоматическом режиме задачи до конца автоматических вычислений, а решать их конструктору-оператору по мере их возникновения, переходя в интерактивный режим путем прерывания автоматических вычислений на время разрешения «конфликтной проектной ситуации». Такой режим конструирования создает условия для гарантированной завершенности проектов в едином технологическом цикле автоматизированного конструирования. Например, на таком принципиальном этапе разработки конструкции, как трассировка соединений одно-, двусторонних интегральных и печатных плат МЭА, за счет того, что непротрассированные в автоматическом режиме соединения не накапливаются до окончания задачи, а трассируются в интерактивном режиме по мере их возникновения, возможна разводка всех соединений при достижении, предельной плотности монтажа. При этом следующие соединения могут трассироваться в автоматическом режиме. Если в задаче трассировки соединений не возникает «конфликтов», то она может быть решена в автоматическом режиме.
В автоинтерактивном режиме можно задавать и отменять контрольные точки, в которых конструктору будут предъявляться результаты автоматического выполнения типовых проектных процедур и в которых он будет производить оценку полученных результатов или изменять условия и ход процесса конструирования по своему усмотрению.
При конструировании в автоинтерактивном режиме предпочтительно выполнение формализованных и проверенных на практике проектных процедур в режиме автоматического счета, а оценку, корректировку и управление процессом конструирования предпочтительней производить в режиме оперативного взаимодействия конструктора с системой.
Практика создания автоинтерактивной системы конструирования гибридно-интегральных и печатных узлов МЭА показала, что ранее разработанные алгоритмы решения конструкторских задач в автоматическом режиме или в режиме диалога через алфавитно-цифровые дисплеи в автоинтерактивной системе конструирования не применимы, так как не отвечают одновременно условиям задач А1, А2, A3 и Б1, Б2, БЗ, Б4 или требуют существенной доработки.
Рассмотрим некоторые общие требования к алгоритмам автоинтерактивной системы конструирования. Проектные алгоритмы должны выполняться достаточно быстро (от секунд до нескольких минут). При этом допустимо снижение качества получаемых результатов по формальным (обычно косвенным) критериям, так как в автоинтерактивном режиме за достижением требуемого качества результатов проектирования следит конструктор.
Алгоритмы должны выдавать всю необходимую (дифференциальную и интегральную) информацию о ходе и результатах конструирования преимущественно в графическом виде для того, чтобы конструктор мог оценить и принять решение по полученным результатам.
Для повышения эффективности и снижения трудоемкости решения задач конструирования в автоинтерактивном режиме алгоритмы конструирования и информационные средства системы автоматизированного конструирования должны помогать конструктору быстро оценивать ситуации при тех или иных его указаниях, предоставляя ему конструктивные ответы на такие вопросы: может ли данный элемент или печатный (пленочный) проводник быть размещен на плате? Если да, то в каком месте платы? Если нет, то может ли этот элемент или проводник быть размещен после сдвига, перестановки или снятия какого-либо из уже размещенных элементов или соединений? Каковы наибольшие габариты элемента или конфигурация проводника, размещение которого возможно на данном шаге? Какова его площадь или длина и так далее?
Сформулированные вопросы хотя и представляются тривиальными, но с учетом требований автоинтерактивного режима конструирования ответ на них требует решения сложных алгоритмических задач.
Оптимизация результатов конструирования в автоинтерактивном режиме - процесс итеративный, поэтому после каждой итерации система должна получить ответ на вопрос: «Зафиксировать новый результат конструирования или оставить старый?» В автоматическом режиме на этот вопрос система автоматизированного конструирования отвечает сама исходя из заложенных при ее разработке критериев оценки качества, в автоинтерактивном режиме право ответа предоставляется конструктору. Это требует от системы предоставления конструктору следующих возможностей:
проведения сравнения характеристик нового и старого вариантов конструкции;
выдачи перечня изменений, произведенных при переходе от старого варианта конструкции к новому (перемещение элементов или проводников, изменение ориентации или конфигурации, удаление элементов или проводников и т. п.);
представления эскизов и другой графической информации о старом и новом вариантах конструкции.
Оценивая и анализируя полученные варианты проекта, конструктор принимает решения о дальнейшем ходе конструирования. Изменение результатов проектирования в автоинтерактивном режиме может производиться конструктором в интерактивном режиме и автоматически. Конструктору должны быть предоставлены исчерпывающие возможности взаимодействия с системой. Эти взаимодействия определяются характером решаемых задач. На этапе размещения элементов это, например, следующие возможности: перемещение элемента; перестановка элемента; изменение ориентации элемента; изменение конфигурации элемента (например, для пленочных резисторов и конденсаторов); увеличение или уменьшение промежутков между элементами; переназначение контактов элемента и др.
В автоинтерактивном режиме пропорции сочетания автоматических и интерактивных процедур могут изменяться в широком диапазоне: от полностью автоматического проектирования до интерактивного «рисования». Однако даже при автоматическом решении ряда проектных задач от конструктора требуется оценка полученных результатов и принятия решения по управлению процессом конструирования.
При интерактивном разрешении проектных задач степень влияния конструктора на формирование решений намного больше, так как конструктор-оператор системы проектирования может совершить ошибку при вводе, корректировке или оценке информации, а это приводит к необратимым искажениям проекта. Чтобы исключить «сбои» в интерактивном режиме взаимодействия, необходимо постоянно алгоритмически контролировать корректность действий конструктора. Это также дополнительное требование к организации процессов конструирования в интерактивном режиме.