Сеть Петри ограничена тогда и только тогда, когда символ w отсутствует в ее дереве достижимости. Если сеть ограничена и символ w отсутствует в дереве достижимости, то сеть представляет систему конечных состояний. Это позволяет решить вопросы анализа простым перебором и проверкой конечного множества всех достижимых маркировок.
Сеть Петри является сохраняющей, если она не теряет и не порождает метки, а просто передвигает их. Свойство сохранения проверяется по дереву достижимости вычислением для каждой маркировки суммы меток. Если метки взвешены, то вычисляется взвешенная сумма. Если сумма одинакова для каждой достижимой маркировки, сеть - сохраняющая.
Задача покрываемости маркировки М маркировкой М’ сводится к поиску на дереве такой вершины х, состояние которой покрывает состояние М. Если такой вершины М(х) не существует, маркировка М не покрывается никакой достижимой маркировкой.
Таким образом, дерево достижимости можно использовать для решения задач безопасности, ограниченности, сохранения и покрываемости. К сожалению, в общем случае его нельзя использовать для решения задач достижимости и активности, а также для определения возможной последовательности запусков. Решение этих задач ограничено существованием символа w. Символ w означает потерю информации, конкретные количества меток отбрасываются, учитывается только существование их большого числа. Вместе с тем, в отдельных конкретных случаях дерево достижимости позволяет судить о свойствах достижимости и активности. Например, сеть, дерево достижимости которой содержит терминальную вершину, не активна. Аналогично искомая маркировка M’ в задаче достижимости может встретиться в дереве достижимости, что означает ее достижимость. Кроме того, если маркировка не покрывается некоторой вершиной дерева достижимости, то она недостижима.