К таким моделям относятся сети с очередями, сети в которых содержат элементы случайности. В естественном виде такие сети возникают, если только часть маршрута процесса предопределена, то есть когда элементы случайности присутствуют в алгоритмах управления или обработки либо, когда задается вероятность отказа какого-либо ресурса системы, вероятность некоторого состояния объекта управления или управляющей системы, определяющей порядок использования ресурса. Графическая часть модели строится также как и для детерминированного случая. Дополнительно указываются вектора времен обслуживания, типы обслуживающих приборов, а также матрица , описывающая вероятности межузловых переходов процесса.
Сетевая модель с элементами случайности представлена на рис. 2.4. Модель процессора представлена узлом . Модели ввода-вывода данных с НМД описаны двумя последовательными этапами: подвод головки дисковода и поиск информации представлены узлами и , а обмен через канал узлом . В моделях НМЛ и учтено время подвода головок, которое значительно больше времени обмена. Канал НМЛ представлен узлом , а объект управления узлом .
В отличие от сети на рис. 2.3., рассматриваемая модель замкнута относительно множества процессов. Пусть в результате действий объекта сформирован запрос. Дождавшись обслуживания в канале и затратив на него время , запрос направляется в очередь к (переход 77), где после его обслуживания в течение времени создается процесс. Создание процесса (операция7) завершается его запуском, что отражается переходом 71 и возвратом процесса в конец очереди к . Если при выполнении программы (операция 1) возникает запрос к базе данных, то процесс переходит к операции 2 (переход 12), и после получения может быть направлен к одному из накопителей информации. Поэтому на путях от узла к узлам , , , необходимо указать вероятности перехода для заявок к операции 2. Это и есть тот элемент случайности в сети, который складывается в результате динамики процессов взаимодействия проблемной задачи с базой данных.
Рассмотрим отработку запроса к супервизору ввода-вывода, обслуживающему диски. Когда запрос достигнет начала очереди к диску (узел ), он получит обслуживание, связанное с позиционированием головок чтения-записи на необходимые цилиндр и сектор. После выполнения этих действий процесс перейдет к операции 3 (переход 23), выполнение которой в узле обеспечивает создание данных, передаваемых канальной программе. Время выполнения операции 3 в узле включает время диспетчеризации процессора, а также время создания канальной программы чтения-записи. После выполнения этих подготовительных функций операции 3, она выполняется в канале (узел ) за время, необходимое для полного ввода данных с диска в основную память. Далее задание переходит к операции 4 и возвращается в , где получает обслуживание, необходимое для выхода из прерывания по обращению к канальной программе и планирования возврата к проблемной программе. Завершив выполнение системных функций операции 4, задание возвращается в к выполнению операции 1 (переход 41). Таким образом, завершается цикл выполнения системных операций по организации обмена данными между основной памятью и диском.
Рис. 2.4. Сетевая модель с элементами случайности:
1 – выполнение счета проблемной задачи; 2 – работа супервизора ввода-вывода, подготовка накопителя информации к вводу-выводу; 3 – подготовка и передача данных через канал; 4 – действия диспетчера процессора; 5 – прочие системные операции; 6 – действия супервизора памяти; 7 – создание процесса; 8 – вывод информации на объект, действие объекта управления.
Дуги, связывающие узлы и , содержат еще один элемент неопределенности трассы процесса, который должен задаваться вероятностной характеристикой. Если в результате ввода установлено, что необходимый массив данных введен полностью, то реализуется переход 34, иначе следует переход 36 и вызов супервизора памяти. Элемент случайности присутствует также в циклическом пути, охватывающем узел , где наряду с рассмотренным выше переходом 12 указаны переходы 14 и 15. Заметим, что в рассматриваемом примере потребовалось использовать вероятностные условия, приписываемые не только к паре узлов, но и к операциям заявок на межузловых связях.