русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Накапливающий параметр — аккумулятор

Бывает так, что при выполнении функции исключительно серьезно встает проблема рас­хода памяти. Эту проблему можно пояснить на примере функции, вычисляющей фак­то­риал числа:

Factorial (0) = 1

Factorial (N) = N * Factorial (N – 1)

Если провести пример вычисления этой функции с аргументом 3, то можно будет уви­деть следующую последовательность:

Factorial (3)

3 * Factorial (2)

3 * 2 * Factorial (1)

3 * 2 * 1 * Factorial (0)

3 * 2 * 1 * 1

3 * 2 * 1

3 * 2

На примере этого вычисления наглядно видно, что при рекурсивных вызовах функций очень сильно используется память. В данном случае количество памяти пропорционально зна­чению аргумента, но аргументов может быть большее число, к примеру. Возникает ре­зон­ный вопрос: можно ли так написать функцию вычисления факториала (и ей подобные), что­бы память использовалась минимально?

Чтобы ответить на данный вопрос положительно, необходимо рассмотреть понятие аккумулятора (накопителя). Для этого можно рассмотреть следующий пример:

Пример 3.3. Функция вычисления факториала с аккумулятором.

Factorial_A (N) = F (N, 1)

F (0, A) = A

F (N, A) = F ((N – 1), (N * A))

В этом примере второй параметр функции F играет роль аккумулирующей пе­ре­мен­ной, именно в ней содержится результат, который возвращается по окончании ре­кур­сии. Сама же рекурсия в этом случае принимает вид "хвостовой", память при этом рас­хо­ду­ется только на хранение адресов возврата значения функции.

Хвостовая рекурсия представляет собой специальный вид рекурсии, в которой имеется един­ственный вызов рекурсивной функции и при этом этот вызов выполняется после всех вы­числений.

При реализации вычисления хвостовой рекурсии могут выполняться при помощи итераций в постоянном объеме памяти. На практике это обозначает, что "хороший" транслятор функционального языка должен "уметь" распознавать хвостовую рекурсию и реализовывать её в виде цикла. В свою очередь, метод накапливающего параметра не всегда приводит к хвостовой рекурсии, однако он однозначно помогает уменьшить общий объём памяти.

Просмотров: 1163


Вернуться в оглавление



Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.