Деление с остатком для дробных чисел может быть произведено по двум различным алгоритмам. Один из них повторяет правила для целых чисел, и именно он представлен оператором %. Если в рассмотренном примере деления 9 на 5 перейти к дробным числам, значение остатка во всех вариантах не изменится (оно будет также дробным, конечно).
9.0%5.0 возвращает 4.0
9.0%(-5.0) возвращает 4.0
(-9.0)%5.0 возвращает -4.0
(-9.0)%(-5.0) возвращает -4.0
Однако стандарт IEEE 754 определяет другие правила.
Такой способ представлен методом стандартного класса Math.IEEEremainder(double f1, double f2).
Результат этого метода – значение, которое равно f1-f2*n, где n – целое число, ближайшее к значению f1/f2, а если два целых числа одинаково близки к этому отношению, то выбирается четное.
По этому правилу значение остатка будет другим:
Math.IEEEremainder(9.0, 5.0) возвращает -1.0
Math.IEEEremainder(9.0, -5.0) возвращает -1.0
Math.IEEEremainder(-9.0, 5.0) возвращает 1.0
Math.IEEEremainder(-9.0, -5.0) возвращает 1.0
Унарные операторы инкрементации ++ и декрементации --, как обычно, можно использовать как справа, так и слева.
int x=1;
int y=++x;
В этом примере оператор ++ стоит перед переменной x, это означает, что сначала произойдет инкрементация, а затем значение x будет использовано для инициализации y. В результате после выполнения этих строк значения x и y будут равны 2.
int x=1;
int y=x++;
А в этом примере сначала значение x будет использовано для инициализации y, и лишь затем произойдет инкрементация. В результате значение x будет равно 2, а y будет равно 1.