Познакомившись с общим подходом к построению решений линейных векторных дифференциальных уравнений, покажем теперь, как получаются решения неоднородных уравнений.
Представим исходное уравнение с неоднородностью, локализованной в правой части уравнения, и умножим обе части уравнения на матричную экспоненту :
.
Обращаясь к правилам дифференцирования векторно-матричных выражений, приведенных выше, несложно заметить, что слева от знака равенства находится производная от произведения матричной экспоненты на вектор y:
.
Сделаем соответствующую замену и проинтегрируем левую и правую части по независимой переменной t:
.
Умножая слева обе части равенства на матрицу , получим общее решение неоднородного дифференциального уравнения:
.
Формула общего решения в своей нотации точно соответствует случаю скалярного уравнения. При невозможности аналитического решения переходный процесс можно вычислить по точкам, заменив непрерывное время дискретным с шагом , где R - радиус сходимости степенного матричного ряда с матрицей :
.
В интеграле можно заменить независимую переменную на дискретную с тем же шагом, что и при разложении экспоненты: , тогда, применяя метод интегрирования по правилу прямоугольников и обозначая матричную экспоненту на k-том шаге через , получим
.
Удобно из формулы вычисления дискретных значений векторного переходного процесса получить рекуррентную формулу. Этого можно добиться, если найти в выражении для часть, которую можно заменить значением :
Повышения точности вычисления переходного процесса достигают за счет замены интеграла квадратурами более высокого порядка, например, первого – формула трапеций, или второго – формула парабол (Симпсона).
Использование формулы трапеций приводит после соответствующих преобразований к следующей рекуррентной формуле:
Если использовать формулу Симпсона, то рекуррентная формула для расчета переходного процесса от точки к точке будет такой:
В приведенных рекуррентных формулах матричные экспоненты имеют следующий вид:
.