Линейность конечно-разностного оператора позволяет ввести конечно-разностный оператор сдвига и многочлены от оператора с целыми коэффициентами, такие, как , где должно рассматриваться как оператор повторной разности k-того порядка.
Действие любого многочлена на функцию g(i) определяется как
.
Применение оператора сдвига к g(i) преобразует последнее в g(i+1):
g(i+1) = E g(i) = (1+) g(i)= g(i) + g(i).
Повторное применение оператора сдвига позволяет выразить (i+n)-е значение ординаты функции g через конечные разности различных порядков:
где – число сочетаний из n элементов по k;
– многочлен степени k от целой переменной n (), имеющий k сомножителей. При k=n .
В силу линейности оператора сдвига можно конечно-разностный оператор выразить, как , и определить повторные конечные разности через многочлены от операторов сдвига так .
Последнее позволяет формульно выражать n-ную повторную разность через (n+1) ординату табличной функции, начиная с i-той строки:
Если в выражении для g(i+n) положить i=0 и вместо подставить их факториальные представления, то после несложных преобразований получится разложение функции целочисленного аргумента по многочленам , которые в литературе называют факториальными:
.
Можно поставить задачу разложения и функции действительной переменной f(x) по многочленам относительно начала координат (аналогично ряду Маклорена), т.е. . Если последовательно находить конечные разности от левой и правой частей, то, зная, что и , после подстановки x=0 будем получать выражения для коэффициентов разложения . У многочленов k-той степени, , поэтому
.
Такое разложение табличной функции f(x) в литературе называют интерполяционным многочленом Ньютона для равных интервалов.