Пусть теперь задана некоторая матричная функция от матрицы A:
.
С другой стороны очевидно и обратное
,
где – матрица с одной единицей на i-том месте диагонали ().
где – проекторы матрицы A, образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно и . Сумма проекторов .
Проекторы обладают свойствами идемпотентных матриц, т.е. матриц, все степени которых равны первой. Для невырожденных проекторов () матрицы A () справедливо:
Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A:
.
Если в качестве матричных функций взять и , то их спектральные разложения будут следующими: