русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Уравнения, векторы, матрицы, линейная алгебра

Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить.  Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами:  методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.

Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.

Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:

Здесь       -  неизвестные,

  -  заданные числа,

 - заданные числовые коэффициенты.

Последовательность записи уравнений в системе и обозначение неизвестных  в  последней  не  играет  роли.  В этом  плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального  ряда  для  неизвестных,  значений  правых  частей  и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое  и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений  три  позиционно упорядоченных неделимых объекта:

список переменных  - ,

список правых частей  -   и

матрицу коэффициентов  - .

Первые два объекта в линейной алгебре называют вектором-строкой, а второй - квадратной матрицей.

Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях  задания векторов и матриц:    ,   - аддитивные и мультипликативные  операции  должны  переходить в аналогичные операции  со  скалярными  величинами.

Если рассмотреть  i-тую строку исходной системы

 ,

то в ней кроме упорядоченного расположения компонент  присутствует упорядоченное по индексу j размещение коэффициентов , которые могут рассматриваться как  вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:

 .

Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.

Определение скалярного произведения  позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:

или

  .

Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).

Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде  несложно определить векторно-матричную операцию , результатом которой является вектор с i-той компонентой, равной  .

Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.

Просмотров: 3330

Вернуться в оглавление:Введение в численные методы



Калашников В. И. Введение в численные методы: Учеб. пособие. – Харьков: НТУ “ХПИ”, 2002. – 132 с. – На русск. яз.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.