Представление действительных чисел в вычислительных машинах с фиксированной разрядной сеткой влечет появление инструментальной погрешности в обрабатываемых числах и результатах арифметических действий.
Принятое при вводе преобразование исходных действительных чисел в нормализованную экспоненциальную форму и размещение их в ограниченной разрядной сетке ЭВМ с порядком и дробной частью (мантиссой) в общем случае вносит в этот операнд относительную инструментальную погрешность, величина которой не превышает
где n – число значащих дробных двоичных разрядов, отведенных для хранения мантиссы.
Приближенное конечно-разрядное число a – это действительное число, занимающее заданное количество разрядов и округленное до числа с ближайшим значением достоверного младшего разряда. Приближенные действительные числа имеют абсолютную и относительную погрешности. Эти погрешности при анализе распространения ошибки при вычислениях приписываются к приближенному числу результата и связываются между собой следующим образом:
- Если число a = 5.3812 имеет все разряды достоверные, то его абсолютная погрешность принимается равной половине единицы младшего разряда, т.е. =0.00005, а относительная погрешность, округляемая обычно до одного-двух значащих достоверных разрядов, будет
-
-
-
Всякие арифметические операции с операндами, представленными в системе с плавающей точкой, в общем случае вносят в результат аналогичную относительную инструментальную погрешность:
где fl(•) – указание на арифметику с плавающей точкой,
– арифметическая операция из множества .
Значение результата, равное нулю принудительно устанавливается в машинах при операциях умножения с двумя операндами, приводящее к исчезновению порядка (отрицательный порядок по модулю не умещается на отведенном для него количестве разрядов).
Несколько иначе обстоит дело при вычитании чисел с плавающей точкой и одинаковым порядком:
,
.
Из последнего можно заключить, что для операции вычитания относительная погрешность численно определяется количеством значащих разрядов в результате, которое из-за выполнения нормализации не может быть меньше . Т.е. погрешность приближается к 100% последовательно. Это предупреждение адресуется составителям вычислительных алгоритмов, которым необходимо выискивать эквивалентные формулы с контролем величины операндов, в определенных ситуациях можно использовать программный переход к вычислениям с удвоенной точностью.
При выполнении аддитивных операций с приближенными операндами погрешность результата равна сумме абсолютных погрешностей всех чисел, участвовавших в операции. Выполнение мультипликативных операций вносит в результат относительную погрешность, равную сумме относительных погрешностей каждого из операндов.