Интегрирование системы нелинейных разностных уравнений первого порядка по Эйлеру аналитически выполнить, как правило, не удается. Поэтому решение задачи получают в численном виде путем вычисления очередных значений процессов по рекуррентным формулам, начиная с известных начальных условий:
,
где
– очередное значение вектора решений,
– вектор начальных значений.
Основной проблемой процесса численного интегрирования является выбор величины шага h. Формула Эйлера вносит в процесс численного решения погрешность, пропорциональную h. Это несложно увидеть, если сравнить вычисляемое при интегрировании уравнения выражение с первыми слагаемыми ряда Тейлора для точки
:
.
По Эйлеру
,
или иначе:
,
а по Тейлору:
,
или иначе:
.
Отбрасываемые члены разложения
характеризуют погрешность формулы Эйлера, в которую входят слагаемые с h в первой степени и выше.
Результат интегрирования можно улучшить, если по найденному значению
,
вычислить значение производной, т.е.
, и в формулу Эйлера ввести среднее арифметическое двух производных: для начала и для конца интервала
. Модифицированная формула примет следующий вид:

Такого рода уточнения (итерации) можно повторять, пока в выражении

модуль разности станет
.
Погрешность модифицированной формулы будет пропорциональна
. Это показывается аналогично предыдущему сопоставлению.
Продифференцируем исходное уравнение

и подставим выражение производной в ряд Тейлора. В результате получим:

Аналогичное выражение для первых двух слагаемых и остаточного ряда второй степени от h получается и для модифицированной формулы Эйлера, если в последней осуществить разложение
в ряд Тейлора по степеням h:

Усреднение производных с итерационным уточнением их для нескольких точек интервала особенно наглядно представлено в формулах Рунге-Кутта четвертого порядка
:

где

Здесь производная вычисляется в трех точках интервала h (на концевых точках и дважды в средней точке интервала для итерационного уточнения), после чего окончательное приращение находится как взвешенное среднее.