Используя описанные выше соотношениям между операторами дифференцирования и операторами конечных разностей несложно в заданном интервале изменения независимой переменной получить конечно-разностную аппроксимации дифференциальных уравнений системой алгебраических рекуррентных формул или уравнений.
Основная идея аппроксимации схематически представляется так: В заданном в общем виде дифференциальном уравнении или системе

производится замена независимой переменной t ее представлением в заданном интервале
путем преобразования
, а искомая функция и ее производные выражаются посредством конечно-разностных соотношений через некоторое число равномерно расположенных с шагом
ординат
, начиная с
:
,
,
,...,
:
.
Разрешив неявную форму разностного выражения относительно старшей ординаты
, получим рекуррентную формулу, из которой по известным k начальным ординатам можно последовательно найти ординаты всего искомого процесса. Вопрос лишь в том, где взять нужное количество начальных ординат. Благополучно разрешима задача лишь в случае, когда производная аппроксимируется разностью первого порядка:
.
После приведения исходной системы к системе уравнений первого порядка каждая искомая переменная получает значение при
, равное своему начальному условию. В результате рекуррентный вычислительный процесс оказывается определенным и позволяет вычислить на очередном шаге
значения всех переменных:


или

где
– вектор переменных,
– вектор производных.
Такой вычислительный процесс в литературе получил название численного интегрирования систем дифференциальных уравнений по явному методу Эйлера. Основная трудность здесь заключается в выборе шага интегрирования для нецелочисленной независимой переменной t.