Задача вычисления определенного интеграла в случаях, когда невозможно аналитически получить первообразные, может быть решена с помощью квадратурных формул.
Основная идея построения квадратурных формул заключается в том, что вычисление интеграла (площади) заменяется выражением, в котором используются некоторые значения подынтегральной функции. В качестве квадратурного выражения обычно выбирают взвешенную сумму значений подынтегральной функции.
Количество параметров квадратурного выражения тесно связано со степенью подынтегральной функции, если последняя может быть описана степенным полиномом ограниченной степени. В общем случае это невозможно, например, когда подынтегральная функция терпит разрыв.
Для устранения особенности интегрируемой функции, последнюю представляют произведением весового сомножителя, включающего в себя характерную особенность, и части подынтегральной функции, которая после исключения особенности может представляться степенным многочленом.
Возможность представления подынтегральной функции полиномом позволяет оценить минимально необходимое число параметров в квадратурной формуле, исходя из критерия получения по ней абсолютно точного значения интеграла. Так, для подынтегральной функции, представленной полиномом нулевой степени, вычисление площади в интервале [a,b] достаточно одного значения функции (площадь прямоугольника). Для полинома первой степени – два значения (площадь трапеции). Для второй степени – три, и т.д. Последнее следует из того, что через (n+1) точку можно провести единственную кривую n-й степени.
Параметрами квадратурных формул являются коэффициенты при значениях полиномиальной подынтегральной функции и значения независимой переменной, при которых вычисляется подынтегральная функция.
где – параметры квадратурной формулы,
– функция с выделенной особенностью,
– весовая функция, включающая особенность.
Для подынтегральных функций без особенностей p(x)=1.
Квадратурные формулы строятся для пределов интегрирования и . Замена пределов интегрирования на или осуществляется линейным преобразованием, которое выше было уже рассмотрено.
Построение любой квадратурной формулы начинается с решения вопроса о классе подынтегральных функций, для которых формула будет абсолютно точна. Если выбраны функции степенного базиса, то число параметров, которое необходимо ввести в квадратурную формулу, равно наивысшей степени n базисной функции, увеличенной на единицу.
Если точки, в которых вычисляются значения подынтегральной функции, определены условиями удобного положения или простотой вычисления в них, то в квадратурной формуле число слагаемых будет равно числу параметров. Если положения точек тоже взяты в качестве параметров, то число слагаемых может оказаться и вдвое меньше. В квадратурную формулу можно ввести также значения производных подынтегральной функции в заданных точках, если вычисление производных проще, чем вычисление функции.
Когда все условия построения квадратурной формулы оговорены, то, используя метод неопределенных коэффициентов (параметров), составляют систему алгебраических уравнений путем подстановки в интеграл и квадратурную формулу базисных функций. Так как число их равно числу параметров, то система будет определена.