русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Разностная аппроксимация частных производных

Среди дифференциальных уравнений в частных производных можно выделить уравнения, описывающие стационарные распределения в заданной области некоторой физической величины, и уравнения, описывающие изменение во времени распределенной в заданной области физической величины. Признаком, разделяющим уравнения на эти два подмножества, является присутствие в уравнении частной производной по времени. Принципиальное различие пространственной и временной независимых переменных состоит в том, что в отличие от однонаправленного изменения реального времени ортогональные пространственные переменные могут изменяться независимо друг от друга в обоих направлениях.

Ядром наиболее часто встречающихся дифференциальных уравнений в частных производных служит уравнение Лапласа

,

где     (набла в квадрате) - оператор Лапласа, который в двумерной декартовой системе координат имеет вид

 .

Это уравнение описывает стационарное поле некоторой физической величины и относится к уравнениям эллиптического, гиперболического или параболического типа в зависимости от значения определителя дифференциальной формы второй степени

, для которой соответственно   ,

где     - в общем случае функции координат и потенциала u.

К нестационарным уравнениям параболического и гиперболического типов относятся соответственно уравнение теплопроводности с параметрами-функциями s и S

и уравнения волновое и бигармоническое с параметром С

  и   .

Названные уравнения представлены в канонической форме, которая включает безразмерные относительные переменные, обычно приводимые к диапазонам изменения [0,1] и [-1,1]. Размерности слагаемых согласуются посредством параметров уравнения.

Основным методом решения дифференциальных уравнений в частных производных является аппроксимация уравнения системой алгебраических уравнений или системой дифференциальных уравнений. Эти два вида аппроксимаций в литературе получили название метод сеток и метод прямых.

Метод сеток реализуется в том случае, когда частные производные, входящие в уравнение, заменяются в каждой точке заданной области конечно-разностными выражениями, полученными из значений искомого решения в окружающих точках. Количество уравнений в системе связано с шагом дискретизации временной и пространственных переменных и формой границы области решения. Число точек, попавших внутрь области решения, определяет число неизвестных и уравнений.

Метод прямых относится к случаю, когда одна из независимых переменных является временем (случай нестационарных задач) или когда одну из пространственных переменных (случай стационарных задач) пропорционально связывают со временем. Частные производные от независимых переменных, не связанных с временем, аппроксимируют конечными разностями. В результате, оставшиеся дискретными независимые переменные сочетанием своих значений определяют общее число дифференциальных уравнений, которые в общем случае являются краевыми.

Аппроксимирующие дифференциальные уравнения с краевыми условиями невозможно интегрировать как систему уравнений Коши. Линейная система краевых задач многократно решается с частными начальными условиями и по результатам решений краевые условия пересчитываются в начальные. Нелинейной системе для приближенного вычисления начальных условий потребуются итерационные процедуры, рассмотренные выше.

Математические модели, сформированные по методам сеток и прямых, могут быть решены методом математического моделирования с применением аналоговых или псевдо аналоговых операционных блоков, а также методом аналогий.

Метод аналогий (аналоговое моделирование) заключается в том, что для каждого уравнения математической модели подбирается физический объект, переменные состояния которого связаны таким же уравнением. В подавляющем большинстве случаев в качестве аналоговых объектов используются схемы с электрическими и электронными компонентами. Особенно простыми аналогами уравнений математических моделей являются уравнения электрических схем, полученные на основании законов Ома и Кирхгофа.

Перечисленные методы в различных вариантах используют конечно-разностную аппроксимацию дифференциальных операторов, рассмотренную в разделе 1.3.1.

Для формирования каждой производной уравнения используют таблицы коэффициентов (п. 1.3.1.2 [3-6]), стоящих в выражении производной перед значениями функции в узловых точках. Погрешность, допускаемая в процессе аппроксимации, определена выражением, коэффициенты которого записаны в крайней справа колонке таблиц.

Чтобы получить конечно-разностную модель уравнения, необходимо интервал или область решения разделить с постоянным шагом по осям координат на требуемое число подинтервалов и для каждой внутренней точки подставить аппроксимирующие выражения в заданное уравнение. После приведения подобных членов в каждом уравнении, получится система алгебраических уравнений при полной дискретизации всех независимых переменных или система дифференциальных уравнений - при неполной дискретизации. К уравнениям добавляются аналогичным образом аппроксимированные соотношения, включающие значения функции и ее производных в точках границы области.

В процессе формирования уравнений особое внимание необходимо обращать на замену производных конечно-разностными эквивалентами в приграничных точках. В выражениях последних должны отсутствовать неизвестные значения функции в точках, расположенных вне области интегрирования. С этой целью для точек, примыкающих к левой границе области определения, коэффициенты аппроксимирующего выражения производной берутся из верхних строчек таблицы, а для точек у правой границы - из нижних.

Просмотров: 2667

Вернуться в оглавление:Аналоговые и гибридные вычислительные устройства



Автор: Калашников В.И. Аналоговые и гибридные вычислительные устройства. Лабораторный практикум: Учебное пособие – Харьков: ХГПУ, 2000. - 194 с. - Русск. яз.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.