Среди дифференциальных уравнений в частных производных можно выделить уравнения, описывающие стационарные распределения в заданной области некоторой физической величины, и уравнения, описывающие изменение во времени распределенной в заданной области физической величины. Признаком, разделяющим уравнения на эти два подмножества, является присутствие в уравнении частной производной по времени. Принципиальное различие пространственной и временной независимых переменных состоит в том, что в отличие от однонаправленного изменения реального времени ортогональные пространственные переменные могут изменяться независимо друг от друга в обоих направлениях.
Ядром наиболее часто встречающихся дифференциальных уравнений в частных производных служит уравнение Лапласа
,
где (набла в квадрате) - оператор Лапласа, который в двумерной декартовой системе координат имеет вид
.
Это уравнение описывает стационарное поле некоторой физической величины и относится к уравнениям эллиптического, гиперболического или параболического типа в зависимости от значения определителя дифференциальной формы второй степени
, для которой соответственно ,
где - в общем случае функции координат и потенциала u.
К нестационарным уравнениям параболического и гиперболического типов относятся соответственно уравнение теплопроводности с параметрами-функциями s и S
и уравнения волновое и бигармоническое с параметром С
и .
Названные уравнения представлены в канонической форме, которая включает безразмерные относительные переменные, обычно приводимые к диапазонам изменения [0,1] и [-1,1]. Размерности слагаемых согласуются посредством параметров уравнения.
Основным методом решения дифференциальных уравнений в частных производных является аппроксимация уравнения системой алгебраических уравнений или системой дифференциальных уравнений. Эти два вида аппроксимаций в литературе получили название метод сеток и метод прямых.
Метод сеток реализуется в том случае, когда частные производные, входящие в уравнение, заменяются в каждой точке заданной области конечно-разностными выражениями, полученными из значений искомого решения в окружающих точках. Количество уравнений в системе связано с шагом дискретизации временной и пространственных переменных и формой границы области решения. Число точек, попавших внутрь области решения, определяет число неизвестных и уравнений.
Метод прямых относится к случаю, когда одна из независимых переменных является временем (случай нестационарных задач) или когда одну из пространственных переменных (случай стационарных задач) пропорционально связывают со временем. Частные производные от независимых переменных, не связанных с временем, аппроксимируют конечными разностями. В результате, оставшиеся дискретными независимые переменные сочетанием своих значений определяют общее число дифференциальных уравнений, которые в общем случае являются краевыми.
Аппроксимирующие дифференциальные уравнения с краевыми условиями невозможно интегрировать как систему уравнений Коши. Линейная система краевых задач многократно решается с частными начальными условиями и по результатам решений краевые условия пересчитываются в начальные. Нелинейной системе для приближенного вычисления начальных условий потребуются итерационные процедуры, рассмотренные выше.
Математические модели, сформированные по методам сеток и прямых, могут быть решены методом математического моделирования с применением аналоговых или псевдо аналоговых операционных блоков, а также методом аналогий.
Метод аналогий (аналоговое моделирование) заключается в том, что для каждого уравнения математической модели подбирается физический объект, переменные состояния которого связаны таким же уравнением. В подавляющем большинстве случаев в качестве аналоговых объектов используются схемы с электрическими и электронными компонентами. Особенно простыми аналогами уравнений математических моделей являются уравнения электрических схем, полученные на основании законов Ома и Кирхгофа.
Перечисленные методы в различных вариантах используют конечно-разностную аппроксимацию дифференциальных операторов, рассмотренную в разделе 1.3.1.
Для формирования каждой производной уравнения используют таблицы коэффициентов (п. 1.3.1.2 [3-6]), стоящих в выражении производной перед значениями функции в узловых точках. Погрешность, допускаемая в процессе аппроксимации, определена выражением, коэффициенты которого записаны в крайней справа колонке таблиц.
Чтобы получить конечно-разностную модель уравнения, необходимо интервал или область решения разделить с постоянным шагом по осям координат на требуемое число подинтервалов и для каждой внутренней точки подставить аппроксимирующие выражения в заданное уравнение. После приведения подобных членов в каждом уравнении, получится система алгебраических уравнений при полной дискретизации всех независимых переменных или система дифференциальных уравнений - при неполной дискретизации. К уравнениям добавляются аналогичным образом аппроксимированные соотношения, включающие значения функции и ее производных в точках границы области.
В процессе формирования уравнений особое внимание необходимо обращать на замену производных конечно-разностными эквивалентами в приграничных точках. В выражениях последних должны отсутствовать неизвестные значения функции в точках, расположенных вне области интегрирования. С этой целью для точек, примыкающих к левой границе области определения, коэффициенты аппроксимирующего выражения производной берутся из верхних строчек таблицы, а для точек у правой границы - из нижних.