русс | укр

Мови програмуванняВідео уроки php mysqlПаскальСіАсемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование


Linux Unix Алгоритмічні мови Архітектура мікроконтролерів Введення в розробку розподілених інформаційних систем Дискретна математика Інформаційне обслуговування користувачів Інформація та моделювання в управлінні виробництвом Комп'ютерна графіка Лекції


Переставна двоїстість рівнянь Максвела


Дата додавання: 2014-10-07; переглядів: 960.


 

Розглянемо систему рівнянь Максвела для гармонічних коливань:

 

(4.71)

 

з якої видно, що вектори і входять в ці рівняння однаковим чином. Тому, якщо замінити

 

на , а на , на , а на ,

 

то перше рівняння перейде в друге, а друге в перше, а в цілому система залишається такою ж. Звідси можна зробити важливе доведення. Нехай є дві електродинамічні задачі, які сформульовані таким чином, що всі умови для вектора для однієї задачі при вказаних замінах переходять в умови для вектора другої задачі, а геометрична конфігурація і граничні умови в обох задачах однакові.

При цьому, якщо одна задача розв’язана, розв’язок другої задачі можна отримати безпосередньо з розв’язку першої простою заміною всіх електричних величин на магнітні і, навпаки.

Ця властивість називається переставна двоїстість рівнянь Максвела і широко використовується при розв’язку різних задач.

 


<== попередня лекція | наступна лекція ==>
Теорема взаємності | Принцип суперпозиції


Онлайн система числення Калькулятор онлайн звичайний Науковий калькулятор онлайн