Полупроводниковыми стабилитронами называют диоды, предназначенные для стабилизации уровня напряжения в электрических схемах. Для этого используются полупроводниковые приборы, у которых на вольт – амперной характеристике имеется участок со слабой зависимостью напряжения от проходящего тока. Такой участок наблюдается на обратной ветви ВАХ кремниевого диода в режиме электрического пробоя, связанного с увеличением напряженности электрического поля в p-n-переходе. При этом электрический пробой p-n-перехода делится на два вида: туннельный и лавинный.
Туннельный пробой обусловлен прямым переходом электронов из валентной зоны одного полупроводника в зону проводимости другого. Это становится возможным, если напряженность электрического поля в p-n-переходе из кремния достигает значения 4·105В/см, а из германия – 2·105В/см. Такая большая напряженность электрического поля возможна при высокой концентрации примесей в p- и n-областях, когда толщина p-n-перехода становится весьма малой. Под действием сильного электрического поля валентные электроны вырываются из связей, образуя парные заряды электрон – дырка, которые увеличивают обратный ток через p-n-переход.
В широких p-n-переходах, образованных полупроводниками с меньшей концентрацией примесей, вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой. Лавинный пробой возникает тогда, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины p-n-перехода. Если за время свободного пробега электроны накапливают кинетическую энергию, достаточную для ионизации атомов в p-n-переходе, то наступает ударная - ионизация атомов, сопровождающаяся лавинным размножением носителей зарядов. Образовавшиеся в результате ударной ионизации свободные носители зарядов увеличивают обратный ток p-n-перехода.
В качестве полупроводниковых стабилитронов используются плоскостные кремниевые диоды. Условное графическое изображение полупроводниковых стабилитронов показано на рис. 2.1,а. Вторым элементом обозначения этих диодов является буква «С», например, КС147А или 2С147А.
Iпр
Uст
Uпроб
а) 2С147А б)
Uобр А Iст minUпр
Iст
B
Pmax Iст max
Iобр
Рис. 2.1. Графическое изображение (а) и вольт – амперная характеристика (б) стабилитрона
На ВАХ полупроводникового стабилитрона (рис. 2.1,б) точками «А» и «В» отмечены границы рабочего участка характеристики. Положение точки «А» соответствует напряжению пробоя p-n-перехода. Напряжение пробоя Uпроб зависит от величины удельного сопротивления исходного материала полупроводника и концентрации примесей. Точка «В» соответствует предельному режиму, в котором на стабилитроне рассеивается максимально допустимая мощность - Pmax.
Стабилитроны характеризуются специальными параметрами, указанными на рис. 2.1,б.
Напряжение стабилизации Uст – напряжение на стабилитроне при заданном токе. Оно зависит от ширины запирающего слоя p-n-перехода, т.е. от концентрации примесей в полупроводниках. При большой концентрации примеси p-n-переход получается тонким и в нем уже при малых обратных напряжениях возникает электрическое поле, вызывающее туннельный пробой. При малой концентрации примеси p-n-переход имеет значительную ширину и лавинный пробой наступает раньше, чем напряженность электрического поля становится достаточной для туннельного пробоя.
Таким образом, подбором удельного сопротивления кремния можно получить требуемое напряжение стабилизации. Практически при напряжениях стабилизации ниже 6В имеет место только туннельный пробой, а при напряжениях выше 8В – лавинный. В интервале от 6В до 8В наблюдаются оба вида пробоя.
Минимально допустимый ток стабилизации Iст min – ток, при котором пробой p-n-перехода становится устойчивым и обеспечивается заданная надежность работы стабилитрона.
Максимально допустимый ток стабилизации Iст max – ток, при котором достигается максимально допустимая мощность Pmax, рассеиваемая стабилитроном.
Дифференциальное сопротивлениеrст диф. = dUст / dIст – отношение приращения напряжения стабилизации к вызвавшему его приращению тока стабилизации. Чем меньше величина rст диф., тем лучше стабилизация напряжения.
Для стабилизации низких напряжений (до 1В) используют прямую ветвь вольт – амперной характеристики диода при Uст > Uк. В этом режиме также наблюдается слабая зависимость напряжения на диоде от проходящего через него тока. Такие полупроводниковые приборы называют стабисторами. Вольт – амперная характеристика стабистора приведена на рис. 2.2,а. Обозначение стабистора, его графическое изображение и схема включения представлены на рис. 2.2,б. Лучшие параметры по сравнению с кремниевыми стабисторами имеют селеновые стабисторы.
Iпр
mA
12
Iст max 2С107А
8
4 + -
Iст min Uст
Iст
0 0,5 1,0 Uпр
B
а) б)
Рис. 2.2. Вольт – амперная характеристика (а) и графическое изображение (б) стабистора
В основном стабилитроны применяются для стабилизации напряжения. Схема стабилизатора напряжения показана на рис. 2.3. Стабилитрон присоединяют параллельно нагрузке Rн, а в общую цепь включают ограничительный резистор R, являющийся функционально необходимым элементом.
UR
R
+
Е I Iст IнRн Uст
_
Рис. 2.3. Схема стабилизатора напряжения
Для схемы, показанной на рис. 2.3, справедливо уравнение
(2.1)
После преобразования уравнения (2.1) получим
(2.2)
На основании уравнения (2.2) на графике обратной ветви ВАХ стабилитрона может быть построена линия нагрузки. Точка, в которой линия нагрузки пересекается с обратной ветвью ВАХ стабилитрона, называется рабочей точкой. При изменении напряжения источника питания Е – линия нагрузки перемещается параллельно самой себе (рис. 2.4,а), а при изменении сопротивления нагрузки Rн – изменяется ее наклон (рис.2.4,б). При этом если рабочая точка не выходит из границ участка АВ, то напряжение на нагрузке остается практически неизменным. Следовательно, в данной схеме напряжение на нагрузке остается постоянным в некоторых пределах изменения напряжения питания и сопротивления самой нагрузки.
С физической точки зрения принцип стабилизации напряжения в данной схеме заключается в следующем.
Увеличение напряжения источника питания на величину ΔЕ приводит к увеличению общего тока в цепи I = Iст + Iн. Поскольку при изменении тока, проходящего через стабилитрон, напряжение на нем остается практически неизменным и равным напряжению стабилизации, то изменением тока нагрузки Iн можно пренебречь. Падение приращения напряжения источника питания ΔЕ почти целиком произойдет на ограничительном резисторе R.
При уменьшении напряжения источника питания на величину ΔЕ общий ток в цепи уменьшается, что приводит к уменьшению тока, проходящего через стабилитрон. Если это уменьшение не привело к выходу рабочей точки за пределы рабочего участка (АВ) характеристики стабилитрона, то напряжение на нагрузке останется неизменным, а напряжение на резисторе R уменьшится на величину ΔЕ. Таким образом, наличие ограничительного резистора R в рассмотренной простейшей схеме стабилизатора напряжения является принципиально необходимым.
IпрIпр
E1Rн/(R + Rн) Uст ERн1/(R + Rн1) Uст
А 0 Uпр A 0 Uпр
Рабочие точки
Е1 Rн1
E2 > E1 Е2 Rн2 > Rн1
Е1/R Rн2
B B E/R
Рmax Е2/RРmax
а) б)
Рис. 2.4. Вольт – амперная характеристика стабилитрона и линии нагрузки:
а) – при изменении напряжения источника питания;
б) – при изменении сопротивления нагрузки.
Изменение сопротивления нагрузки Rн при неизменном напряжении источника питания Е не приведет к изменению напряжения на ограничительном резисторе R, а вызовет изменение тока, проходящего через стабилитрон.