русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Уравнение Шредингера


Дата добавления: 2015-09-15; просмотров: 1154; Нарушение авторских прав


 

Волновая функция в виде плоской монохроматической волны описывает частный случай движения квантово-механической частицы - движение свободной частицы. Именно микрочастица, которая не подвергается какому-либо внешнему воздействию, описывается волной де Бройля. Возникает вопрос, какой вид будет иметь волновая функция и как ее найти, если частица не является свободной, находится, например, во внешнем поле? В классической физике существует уравнение, описывающее движение тела в самом общем случае - это основное уравнение динамики, второй закон Ньютона. В квантовой физике также существует уравнение, с помощью которого можно описать состояние микрочастицы в разнообразных условиях. Это уравнение называется уравнением Шредингера. Так же, как и уравнение Ньютона, уравнение Шредингера не выводится, его справедливость подтверждается многочисленными экспериментальными фактами, являющимися следствием этого уравнения.

Уравнение Шредингера - это дифференциальное уравнение, неизвестной в котором является волновая функция микрочастицы Y(r,t), зависящая в общем случае от координат и времени. В случае потенциальных силовых полей, описываемых потенциальной энергией U(r), общее уравнение Шредингера имеет вид

 

(1.23)

 

здесь i - мнимая единица; m - масса частицы; r - радиус-вектор, определяющий ее положение; D - оператор Лапласа, который в прямоугольной декартовой системе координат записывается в виде

 

(1.24)

 

Волновая функция - комплексная величина и поэтому физического смысла не имеет. Но нахождение волновой функции в результате решения уравнения Шредингера позволяет вычислить наблюдаемую физическую величину - плотность вероятности или плотность распределения координат частицы w(r,t):

(1.25)

 

Вероятность обнаружения частицы в бесконечно малом элементе объема dV будет равна, очевидно, , а вероятность обнаружить частицу внутри конечного объема V можно вычислить с помощью интеграла по этому объему: .



Таким образом, задача квантовой механики состоит в определении вероятностей тех или иных событий с помощью волновой функции, являющейся решением уравнения Шредингера. По вероятностям можно найти средние значения случайных физических величин, т.е. рассчитать те параметры, которые можно измерить.

Как любое линейное дифференциальное уравнение в частных производных уравнение Шредингера имеет множество решений. Причем, всякая линейная комбинация любых частных решений также является решением этого уравнения.

Среди решений уравнения Шредингера есть стационарные. Стационарными называются состояния, в которых ни одна из квантово-механических вероятностей не изменяется со временем. Для любого стационарного состояния волновую функцию можно записать в виде

 

(1.26)

 

где функция зависит только от координат частицы; w - вещественный параметр (частота волновой функции), который связан с энергией этого состояния E равенством .

С учетом (1.26) уравнение Шредингера принимает вид

 

(1.27)

 

Уравнение (1.27) называется уравнением Шредингера для стационарных состояний или стационарным уравнением Шредингера. Волновая функция , входящая в это уравнение, описывает состояние микрочастицы в стационарных состояниях. Уравнение Шредингера (1.23) называется общим уравнением Шредингера.

Потенциальная функция в уравнениях (1.23) и (1.27) определяется так же, как в классической физике, т.е. как потенциальная энергия точечной частицы, локализованной в некоторой точке силового поля, координаты которой определяются радиусом-вектором r.

Стационарное уравнение Шредингера необходимо дополнить граничными условиями, которые накладывают определенные условия на волновую функцию на границах областей с разными значениями потенциальной энергии U(r). Физический смысл этих условий заключается в том, что решения уравнения Шредингера должны переходить друг в друга без скачков на границах соседних областей. Для этого необходимо, чтобы на границе раздела областей были однозначны и непрерывны волновая функция и ее первые пространственные производные:

 

(1.28)

 

где индексы 1 и 2 соответствуют значениям функций на границе двух соседних областей.

 



<== предыдущая лекция | следующая лекция ==>
 | Частица в одномерной прямоугольной потенциальной яме


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.185 сек.