русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Применение теоремы Гаусса.


Дата добавления: 2015-08-31; просмотров: 1010; Нарушение авторских прав


Чтобы найти напряженность с помощью теорем Гаусса, нужно взять интеграл. А как его взять, если мы Е еще только пытаемся найти? Кроме того, под интегралом «мешает» cosa. Надо суметь выбрать такую замкнутую поверхность (ее удобно называть гауссовой), в каждой точке которой было бы Е = const, и cosa = const. Тогда в левой части теоремы Е и cosa можно будет вынести из-под знака интеграла. Поэтому практически теорему Гаусса можно применить только в следующих случаях: сфера, шар, длинная нить, длинный цилиндр, бесконечная плоскость.

1) Сфера,заряженная с поверхностной плотностью заряда s (Кл/м2)

Рассмотрим области : 1) вне сферы ( ) и внутри ее ( ). Выберем поверхности: 1) S1 и 2) S2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

(¨) Потоки вектора Е через S1 ( ) и S2. ( ) E^n, a = 0, cosa = 1.  
  (¨¨) по теореме Гаусса; F2 = 0, т.к. S2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r).  
 
q = s×2pR2 – полный заряд сферы Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.  

 

2)Тонкая длинная нить,заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l.

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Разобьем поверхность цилиндра на боковую и две торцевых. Для боковой - cosa = 1, для торцевых - cosa = 0.  
по теореме Гаусса; охватываемый заряд – это отрезок нити длиной l. Приравнивая и сокращая, получим E(r).  
 
 

 



3) Тонкостенный длинный цилиндр, заряженный:

1) с линейной плотностью заряда t или

2)с поверхностной плотностью заряда s.

Этот пример аналогичен предыдущему. Выбираем гауссову поверхность в виде соосного цилиндра, разбиваем поверхность на боковую и две торциальные. В первом случае при заданной линейной плотности t получим такую же формулу, как идля длинной нити. Во втором случае охватываемый заряд равен (s×2p×R×l) и формула для E несколько иная, хотя зависимость от r – та же.

 

 

4) Плоскость, бесконечно протяженная, заряженная с поверхностной плотностью заряда s.

Выберем гауссову поверхность S в виде цилиндра, перпендикулярного заряженной плоскости. Высота цилиндра (2×х/2). [9] Разобьем поверхность на боковую и две торцевых.

поток через Sбок = 0, т.к.× E^n, a = 90о и cosa = 0  
Sзаштрих – площадка с зарядом, охватываемым цилиндром  
 
S заштрих = S торц, т.к. образующие цилиндра перпендикулярны заряженной плоскости. Поле протяженной плоскости – однородное и не зависит от расстояния  
         

 

5) Две плоскости, параллельные, разноименно заряженные (плоский конденсатор). В этом случае напряженность поля можно найти по принципу суперпозиции, зная напряженность поля одной плоскости:

 

A) ЕА = Е2 - Е1 = 0 B) ЕВ = Е2 + Е1 =s /eо C) ЕС = Е1 - Е2 =0
Поле плоского конденсатора можно считать однородным с достаточной степенью точности, если расстояние между пластинами значительно больше размеров пластин.

 



<== предыдущая лекция | следующая лекция ==>
Теорема Гаусса. | Потенциалы полей различных заряженных тел.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.