На основе опытных данных был получен принципа суперпозиции (наложения) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj– напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.
при дискретном
распределении зарядов
принцип суперпозиции
при непрерывном
распределении зарядов
В качестве примера получения выражения для напряженности поля с помощью принципа суперпозиции найдем напряженность поля тонкого стержня конечной длины, равномерно заряженного с линейной плотностью заряда t
Выберем бесконечно малый элемент dl стержня с зарядом dq. Поскольку напряженности от различных элементов направлены по-разному, введем оси проекций х и у. Итегрируя, найдем результирующие напряженности Ех и Еу.
dE- напряженность от элемента стержня dl с зарядом dq = t×dl, dEх и dEy – проекции dE на направления х и у.
Чтобы проинтегрировать, сведем к одной переменной a
длина дуги АС при малых углах, она же из треугольника
(А, С, dl)
модуль
напряженности
Для бесконечно длинной нити a1 ® 0, a2 ® 180о, следовательно, Еу = 0 и Е = Ех (cos180o = -1),
r – расстояние от точки, в которой определяется напряженность, до нити.
Этот пример показывает, что вычисление напряженности полей представляет собой достаточно сложную задачу даже в нашем случае, когда мы не учитывали поле вблизи концов стержня.
Основной задачей электростатики является вычисление полей заряженных тел. Найти напряженность поля заряженного тела можно с помощью:
1) принципа суперпозиции - это сложная математическая задача, решаемая только в некоторых простых случаях или
2) теоремы Гаусса, которая упрощает расчеты, но только в случае бесконечной плоскости, бесконечной нити (цилиндра) или сфер и шаров (см. ниже).