русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Работа по переносу заряда в электростатическом поле.


Дата добавления: 2015-08-31; просмотров: 1045; Нарушение авторских прав


Сила, действующая на заряд в электрическом поле. Это выражение может быть использовано всегда, тогда как формула (·) применима только для точечных зарядов, сфер и шаров.

Пусть точечный заряд q переносится в поле, создаваемом другим точечным зарядом qо. Найдем работу, необходимую для переноса q из положения с радиус-вектором r1 в положение с радиус-вектором r2. (см. рис.).

полная работа по переносу заряда q в электрическом поле, a - угол между вектором Е и вектором перемещения dl
  Сведем подынтегральное выражение к одной переменной r, используя выражение для напряженности поля заряда qо и связь между перемещением dl и приращением радиус-вектора dr. Интегрируя, найдем выражение для работы.
       

 

Из этой формулы следует очень важный вывод: работа в электростатическом поле не зависит от формы пути, а определяется только начальным и конечным положением переносимого заряда.
Работа в электростатическом поле по замкнутому пути равна нулю

Из механики известно, что силовое поле, работа в котором определяется только начальным и конечным положениями тела, называется консервативным. Следовательно, электростатическое поле является консервативным или чаще говорят, потенциальным Линейный интеграл по замкнутому контуру L называется циркуляцией. Отсюда следует:

Циркуляция вектора напряженности электростатического поля равна нулю. [6] Это является условием потенциальности поля.

Работа консервативных (потенциальных) сил равна убыли потенциальной энергии тела. Следовательно, можно ввести еще одну характеристику электростатического поля – потенциал j.

(В = Дж/Кл) потенциал(скаляр) – энергетическая характеристика электростатического [7] поля - по смыслу это: 1) потенциальная энергия, которой обладает единичный положительный заряд, помещенный в данную точку поля или 2) работа, которую надо совершить, чтобы перенести единичный положительный заряд из данной точки 1 в бесконечность (¥).
разность потенциалов – это работа, которую надо совершить, чтобы переместить единичный положительный заряд из точки 1 в точку 2

 



Найдем связь между напряженностью и потенциалом.

работа в потенциальном (консервативном) поле равна убыли потенциальной энергии
dx ,- перемещение выразим элементарную работу через напряженность и разность потенциалов; сократим на q, обозначим проекцию вектора Е на направление х как Ех, получим:
(··) связь между Е и j в дифференциальной формедля одномерного случая, когда потенциал зависит только от координаты х - j (х)
       

 

В трехмерном случае, когда потенциал является функцией j (х,y,z), запишем формулы для каждой проекции и, объединяя их в одно выражение, найдем (учитывая, что Е - вектор):
Ñ («набла») - другое обозначение градиента (модуль вектора Е) Напряженность электростатического поля равна градиенту потенциала,взятому с обратным знаком.

 

Градиент– это вектор, показывающий направление наибольшего роста скалярной функции (в нашем случае - потенциала).[8] В одномерном случае градиент напряженности dj / dx приобретает простой физический смысл: он показывает, на сколько изменяется потенциал на единице длины.

«-» в правой части формул означает, что вектор напряженности Е всегда направлен в сторону убывания потенциала.

Из приведенных выражений, зная j (х,y,z), можно, дифференцируя, найти напряженность поля. Производя обратную операцию – интегрирование, можно при известной напряженности найти потенциал. Рассмотрим случай зависимости

Е и j только от одной переменной х. Из формулы (··) находим:

 

(···) Связь разности потенциалов с напряженностью в интегральной форме для одномерного случая, когда Е(х)

 

 



<== предыдущая лекция | следующая лекция ==>
Заключение | Графическое изображение электростатического поля.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.