Следующий полупроводниковый прибор из класса тиристоров – тринистор. Его основное отличие от динистора – наличие дополнительного вывода, называемого управляющим электродом (УЭ), от одного из переходов (рис. 5) четырехслойной структуры. Что же дает этот вывод?
Предположим, что управля-ющий электрод никуда не подключен. В этом варианте тринистор сохраняет функции динистора и включается при достижении напряжения на аноде UВКЛ (рис. 6).
Но стоит подать на управляющий электрод относите-льно катода хотя бы небольшое плюсовое напряжение и пропу-стить таким образом постоянный ток через цепь управляющий электрод – катод, как напряжение включения уменьшится. Чем больше ток, тем меньше напряжение включения.
Наименьшее напряжение включения будет соответстввать определенному максимальному току IУ.Э, который называют током спрямления – прямая ветвь спрямляется настолько, что становится похожей на такую же ветвь диода.
После включения (т. е. открывания) тринистора управляющий электрод теряет свои свойства и выключить тринистор удастся либо уменьшением прямого тока ниже тока удержания IУД, либо кратковременным отключением питающего напряжения (допустимо кратковременное замыкание анода с катодом).
Тринистор может быть открыт как постоянным током, пропускаемым через управляющий электрод, так и импульсным, причем допустимая длительность импульса составляет миллионные доли секунды!
Каждый тринистор (часто используются тринисторы серий КУ101, КУ201, КУ202) имеет определенные параметры, которые приводятся в справочниках и по которым обычно тринистор подбирают для собираемой конструкции. Во-первых, это допустимое постоянное прямое напряжение (UПР) в закрытом состоянии, а также постоянное обратное напряжение (UОБР) – оно оговаривается не для всех тринис-торов, и в случае отсутствия такой цифры подавать на данный тринистор обратное напряжение нежелательно.
Следующий параметр – постоянный ток в открытом состоянии (IПР) при определенной допустимой температуре корпуса. Если тринис-тор будет нагреваться до большей температуры, его придется установить на радиатор.
Не менее важен такой параметр, как ток удержания (IУД), характеризующий минимальный ток анода, при котором тринистор остается во включенном состоянии после снятия управляющего сигнала. Оговариваются также предельные параметры по цепи управляющего электрода – максимальный открывающий ток (IУ.ОТ) и постоянное открывающее напряжение (UУ.OT) при токе, не превышающем IУ.ОТ.
При эксплуатации тринисторов серий КУ201, КУ202 рекомендуется между управляющим электродом и катодом включать шунтирующий резистор сопротивлением 51 Ом, хотя на практике в большинстве случаев наблюдается надежная работа и без резистора. И еще одно важное условие для этих тринисторов – при минусовом напряжении на аноде подача тока управления не допускается.
Контрольные вопросы:
1. УГО тринистора.
2. Приведите ВАХ тринистора. В чем состоит принцип работы тринистора?
3. Какие основные параметры тринистора? В чем их суть?
Задание 3 – Генератор световых вспышек
Запаситесь тринистором, например, КУ201Л, миниатюрной лампой накаливания на 24 В, источником постоянного напряжения 18...24 В при токе нагрузки 0,15...0,17 А и источником переменного напряжения 12... 14 В (например, сетевым трансформатором от старого приемника или магнитофона с двумя вторичными обмотками на 6,3 В при токе до 0,2 А, соединенными последовательно).
Уяснить работу тринистора и особенности управления им поможет схема, приведенная нарис. 7.
Движок переменного резистора R2 установите в нижнее по схеме положение, а затем подключите каскад на тринисторе к источнику постоянного тока. Нажав на кнопку SB1, плавно перемещайте движок переменного резистора вверх по схеме до тех пор, пока не зажжется лампа HL1. Это укажет на то, что тринистор открылся. Кнопку можете отпустить, лампа будет продолжать светиться.
Чтобы закрыть тринистор и привести его в исходное состояние, достаточно на короткое время отключить источник питания. Лампа погаснет. Нажав на кнопку вновь, вы откроете тринистор и зажжете лампу. Теперь попробуйте погасить ее другим способом – при отпущенной кнопке замкните на мгновенье, скажем, пинцетом, выводы анода и катода, как это показано на рис. 7 штриховой линией.
Чтобы измерить открывающий ток тринистора, включите в разрыв цепи управляющего электрода (в точке А) миллиамперметр и, плавно перемещая движок переменного резистора из нижнего положения в верхнее (при нажатой кнопке), дождитесь момента зажигания лампы. Стрелка миллиамперметра зафиксирует искомое значение тока.
Чтобы узнать, каков ток удержания тринистора, следует включить миллиамперметр в разрыв цепи в точке Б, а последовательно с ним переменный резистор (номиналом 2,2 или 3,3 кОм), сопротивление которого вначале должно быть выведено. При открытом тринисторе увеличивайте сопротивление дополнительного резистора до тех пор, пока стрелка миллиамперметра не возвратится скачком к нулевой отметке. Показания миллиамперметра перед этим моментом и есть ток удержания.
Задание 4 – Тринистор управляется импульсом
Немного измените тринисторный каскад, исключив из него переменный резистор и введя конденсатор С1 емкостью 0,25 или 0,5 мкФ, как показано на рис. 8. Теперь на управляющий электрод постоянное напряжение не подается, хотя тринистор от этого не стал неуправляемым.
Подав на каскад питающее напряжение, нажмите на кнопку. Почти мгновенно зарядится конденсатор С1, а его ток зарядки в виде импульса пройдет через параллельно включенные резистор R2 и управляющий электрод. Но даже такого кратковременного импульса достаточно, чтобы тринистор успел открыться. Лампа зажжется и, как и в предыдущем случае, останется в таком состоянии даже после отпускания кнопки. Конденсатор разрядится через резисторы R1, R2 и будет готов к следующему пропусканию импульса тока.
Теперь возьмите оксидный конденсатор С2 емкостью не менее 100 мкФ и на мгновенье подключите его в соответствующей полярности к выводам анода и катода тринистора. Через конденсатор также пройдет импульс зарядного тока. В результате тринистор окажется зашунтирован (указанные выводы замкнуты) и, естественно, он закроется.
Задание 4 – Тринистор в регуляторе мощности
Способности тринистора открываться при разном анодном напряжении в зависимости от тока управляющего электрода широко используются в регуляторах мощности, изменяющих средний ток, протекающий через нагрузку.
Чтобы познакомиться с этой "профессией" тринистора, соберите макет из деталей, показанных на схеме, приведенной на рис. 9.
В двухполупериодном выпрямителе могут работать как отдельные диоды, так и готовый диодный мост, например, серий КЦ402, КЦ405. Фильтрующего конденсатора на выходе выпрямителя нет – он здесь не нужен. Для визуального контроля протекающих в каскаде процессов подключите параллельно нагрузке (лампа HL1) осциллограф, работающий в автоматическом (либо ждущем) режиме с внутренней синхронизацией.
Установите движок переменного резистора R2 в верхнее по схеме положение (сопротивление выведено) и подайте на диодный мост переменное напряжение. Нажмите на кнопку SB1. Сразу же зажжется лампа, а на экране осциллографа появится изображение полупериодов синусоиды (диаграмма а), характерное для двухполупериодного выпрямления без сглаживающего конденсатора.
Отпустите кнопку – лампа погаснет. Все правильно, ведь тринистор закрывается, как только синусоидальное напряжение переходит через нуль. Если же на выходе выпрямителя будет установлен фильтрующий оксидный конденсатор, он не позволит выпрямленному напряжению уменьшаться до нуля (форма напряжения для этого варианта показана на диаграмме штриховой линией) и лампа не погаснет после отпускания кнопки.
Вновь нажмите на кнопку и плавно перемещайте движок переменного резистора вниз по схеме (вводите сопротивление). Яркость лампы начнет уменьшаться, а форма "полусинусоид" искажаться (диаграмма б). Теперь ток через управляющий электрод уменьшается по сравнению с первоначальным значением, а следовательно, тринистор открывается при большем питающем напряжении, т. е. часть "полусинусоиды" тринистор остается закрытым. Поскольку при этом уменьшается средний ток через лампу, ее яркость уменьшается.
При дальнейшем перемещении движка резистора, а значит уменьшении управляющего тока, тринистор может открываться лишь тогда, когда напряжение питания практически достигает максимума (диаграмма в). Последующее уменьшение тока через управляющий электрод приведет к неоткрыванию тринистора.
Таким образом, изменением управляющего тока, а значит, амплитуды напряжения на управляющем электроде, удается регулировать мощность на нагрузке в достаточно широких пределах. В этом суть амплитудного метода управления тринистором.
Если же необходимо получить большие пределы регулирования, используют фазовый метод, при котором изменяют фазу напряжения на управляющем электроде по сравнению с фазой анодного напряжения.
Перейти на такой способ управления несложно – достаточно включить между управляющим электродом и катодом тринистора оксидный конденсатор С1 емкостью 100...200 мкФ. Теперь тринистор будет способен открываться при малых амплитудах анодного напряжения, но уже во второй "половине" каждого полупериода (диаграмма г). В итоге пределы изменения среднего тока через нагрузку, а значит, выделяющейся на ней мощности, значительно расширятся.
Задание 5 – Аналог тринистора
Бывает, что приобрести нужный тринистор не удается. Его с успехом может заменить аналог, собранный из двух транзисторов разной структуры (рис. 10).
Если на базу транзистора VT2 подать положительное (по отношению к эмиттеру) напряжение, транзистор приоткроется и через него потечет ток базы транзистора VT1. Этот транзистор также приоткроется, что приведет к увеличению тока базы транзистора VT2. Положительная обратная связь между транзисторами приведет к их лавинообразному открыванию.
Транзисторы аналога выбирают в зависимости от максимального тока нагрузки и питающего напряжения. На управляющий переход как аналога, так и тринистора подают напряжение (или импульсный сигнал) только положительной полярности. Если по условиям работы конструируемого устройства возможно появление отрицательного сигнала, следует защищать управляющий электрод, например, включением диода (катодом – к управляющему электроду, анодом – к катоду тринистора).