КЛАСТЕРНЫЙ АНАЛИЗ
Кластерный анализ — это совокупность методов, позволяющих классифицировать многомерные наблюдения, каждое из которых описывается набором исходных переменных Х1,Х2, ..., Хm. Целью кластерного анализа является образование групп схожих между собой объектов, которые принято называть кластерами. Слово кластер английского происхождения (cluster), переводится как сгусток, пучок, группа. Родственные понятия, используемые в литературе, — класс, таксон, сгущение. Термин кластерный анализ (впервые ввел Tryon, 1939).
Основные методы кластерного анализа: объединение (древовидная кластеризация), двувходовое объединение и Метод K средних.
ОБЪЕДИНЕНИЕ (древовидная кластеризация)
Назначение этого алгоритма состоит в объединении объектов в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево.
Рассмотрим горизонтальную древовидную диаграмму. Диаграмма начинается с каждого объекта в классе (в левой части диаграммы). Теперь представим себе, что постепенно (очень малыми шагами) вы "ослабляете" ваш критерий о том, какие объекты являются уникальными, а какие нет. Другими словами, вы понижаете порог, относящийся к решению об объединении двух или более объектов в один кластер.

В результате, вы связываете вместе всё большее и большее число объектов и агрегируете (объединяете) все больше и больше кластеров, состоящих из все сильнее различающихся элементов. Окончательно, на последнем шаге все объекты объединяются вместе. На этих диаграммах горизонтальные оси представляют расстояние объединения (в вертикальных древовидных диаграммах вертикальные оси представляют расстояние объединения).
В результате успешного анализа методом объединения появляется возможность обнаружить кластеры (ветви) и интерпретировать их.