русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Первый этап второй глобальной научной революции


Дата добавления: 2015-08-31; просмотров: 1132; Нарушение авторских прав


В 1888 г. Генрих Герц открыл электромагнитные волны, блестяще подтвердив предсказание Максвелла. В 1895 г. Вильгельм Рентген обнаружил лучи, получившие позднее название рентгеновских лучей, которые представляли собой коротковолновое электромагнитное излучение. Изучение природы этих загадочных лучей, способных проникать через светонепроницаемые тела, привело Джозефа Томсона к открытию первой элементарной частицы – электрона.

 

Важнейшим открытием 1896 г. стало обнаружение радиоактивности Анри Беккерелем. Изучение этого феномена началось с исследования загадочного почернения фотопластинки, лежавшей рядом с кристаллами соли урана. Эрнест Резерфорд в своих опытах показал неоднородность радиоактивного излучения, состоявшего из α, β и γ-лучей. Позже, в 1911 г. он смог построить планетарную модель атома.

К великим открытиям конца XIX в. также следует отнести работы А.Г. Столетова по изучению фотоэффекта, П.Н. Лебедева о давлении света. В 1901 г.Макс Планк предположил, пытаясь решить проблемы классической теории излучения нагретых тел, что энергия излучается малыми порциями – квантами,причем энергия каждого кванта пропорциональна частоте испускаемого излучения. Связывающий эти величины коэффициент пропорциональности ныне называется постоянной Планка (h). Она является одной из немногих универсальных физических констант нашего мира и входит во все уравнения физики микромира. Также было обнаружено, что масса электрона зависит от его скорости.

Все эти открытия буквально за несколько лет разрушили то стройное здание классической науки, которое еще в начале 80-х годов XIX в. казалось практически законченным. Все прежние представления о материи, ее строении, движении и его свойствах и типах, о форме физических законов, о пространстве и времени были опровергнуты. Это привело к кризису физики и всего естествознания и стало симптомом более глубокого кризиса всей классической науки. Метафизические философские основания науки Нового времени, на которых строились ее гносеологические предпосылки, должны были уступить место новым основаниям, способным объяснить свершившиеся открытия и дать возможность дальнейшего развития науки.



Кризис физики стал первым этапом второй глобальной научной революции в науке и переживался большинством ученых очень тяжело. Ведь возникал вопрос об исчезновении массы и материи вообще, появлялись сомнения в законе сохранения энергии. Ученым казалось, что неверным было все то, чему они учились. В этой атмосфере неизбежно появились сомнения в возможности познания мира с помощью научных методов, некоторые ученые усомнились в том, что мир вообще существует объективно, независимо от нашего сознания.


Второй этап второй глобальной научной революции
К лучшему ситуация начала меняться только в 20-е годы XX в., с наступлением второго этапа научной революции. Он связан с созданием квантовой механики и сочетанием ее с теорией относительности, созданной в 1906–1916 гг. Начала складываться новая квантово-релятивистская картина мира, в которой открытия, породившие кризис в физике, были объяснены.

Предшествующие научные представления были оспорены буквально со всех сторон. Ньютоновские твердые атомы, как ныне выяснилось, почти целиком заполнены пустотой. Твердое вещество не являлось больше важнейшей природной субстанцией. Трехмерное пространство и одномерное время превратились в относительные проявления единого четырехмерного пространственно-временного континуума. Время теперь текло по-разному для тех, кто двигался с разной скоростью. Вблизи массивных предметов оно замедлялось, а при определенных обстоятельствах могло и совсем остановиться. Законы Евклидовой геометрии более не были обязательными для природоустройства в масштабах Вселенной. Планеты двигались по своим орбитам не потому, что их притягивала к Солнцу сила всемирного тяготения, а потому, что пространство, в котором они двигались, было искривлено. Субатомные феномены обнаруживали себя и как частицы, и как волны, демонстрируя свою двойственную природу (корпускулярно-волновой дуализм). Стало невозможным одновременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подрывал и вытеснял собой старый лапласовский детерминизм, провозглашая случайность формой проявления закономерности. Научные наблюдения и объяснения не могли двигаться дальше, не затронув природы наблюдаемого объекта, ставя результаты научного исследования в зависимость от условий протекания эксперимента и от наличия наблюдателя. Физический мир, увиденный глазами ученого XX века, напоминал уже не огромный часовой механизм, а необъятную мысль.


Третий этап и итоги второй глобальной научной революции
Началом третьего этапа научной революции было овладение атомной энергией в 40-е гг. XX в. и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период интенсивно начинают развиваться химия, биология и цикл наук о Земле, создающих свои собственные научные картины мира. Следует также отметить, что с середины XX в. наука окончательно слилась с техникой, что привело к современной научно-технической революции.

Новая картина мира стала первым важнейшим итогом второй глобальной научной революции.

Другим результатом научной революции стало утверждение неклассического стиля научного мышления (стиль научного мышления – это принятый в научной среде способ постановки научных проблем, аргументации, изложения научных результатов, проведения научных дискуссий и т.п.). Он нашел свое выражение в замене созерцательного стиля классической науки новым, деятельностным стилем современной науки. С ним связано изменение предмета науки, под которым теперь понимается не реальность в чистом виде, а ее отдельная сторона, срез, черта. От изучения отдельных предметов, взятых как нечто неизменное и могущее существовать само по себе, наука перешла к изучению условий существования предмета, так как от этого существенно зависели результаты исследования. Результаты исследования теперь также зависели и от взаимодействия предмета исследования с приборами и инструментами, так как все больше наука имела дело с такими объектами, которые были недоступны без этих приборов. Поэтому все чаще наука имела дело не с реальными природными объектами, а их математическими моделями, так как только с их помощью можно изучить потенциальные реальности квантовой механики или виртуальные реальности физики высоких энергий. Это привело к усилению математизации современной науки, повышению уровня ее абстрактности, утрате наглядности, характерной для классической науки.

Изменились логические основания науки. Наука стала использовать такой логический аппарат, который наиболее приспособлен для фиксации нового деятельностного подхода к анализу явлений действительности. Это вызвало использование неклассических (неаристотелевских) многозначных логик, ограничения и отказы от использования таких классических логических приемов, как закон исключенного третьего.

Наконец, еще одним итогом второй глобальной научной революции стало развитие биосферного класса наук и новое отношение к феномену жизни. Жизнь перестала быть случайным явлением во Вселенной, а стала закономерным результатом саморазвития материи, также закономерно приведшим к возникновению разума. Науки биосферного класса, к которым относятся почвоведение, биогеохимия, биоценология, биогеография, экология изучают природные системы, где идет взаимопроникновение живой и неживой природы, т.е. происходит взаимосвязь разнокачественных природных явлений. В основе биосферного класса наук лежит идея глобального эволюционизма, идея всеобщей связи в природе (системный подход). Жизнь и живое понимаются как существенный элемент мира, реально формирующий этот мир, создавший его в нынешнем виде. Воплощением этих идей стал антропный принципсовременной науки и философии, в соответствии с которым наша Вселенная такова, какова она есть, только потому, что в ней есть человек.

Но главным итогом второй глобальной научной революции, бесспорно, стало создание современной науки, связанной с квантово-релятивистской картиной мира. Почти по всем своим характеристикам она отличается от классической науки, поэтому ее иногда еще называют неклассической наукой.

 



<== предыдущая лекция | следующая лекция ==>
Открытия в химии | Матричная структура управления.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.