русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Напряженность магнитного поля.


Дата добавления: 2015-08-31; просмотров: 1062; Нарушение авторских прав


Теорема о циркуляции вектора магнитной индукции в вакууме ( ) допускает обобщение на магнитное поле в веществе в виде: , где Iмакро и Iмикро – алгебраическая сумма макро и микро токов через поверхность S ограниченных контуром L. Покажем теперь, что Iмикро связан с намагниченностью j:

Т.е. сумма микро токов через поверхность S ограниченных контуром L равна циркуляции вектора намагниченности j. Рассмотрим прямой круговой намагниченный цилиндр длинной dl и площадью поперечного сечения S. Молекулярные токи внутри цилиндра текут в противоположные стороны и поэтому взаимноскомпенсированы. Нескомпенсированы только те токи, которые выходят на поверхность цилиндра и ни складываются в поверхностный ток

С другой стороны полный магнитный момент цилиндра по опр намагниченности равен: ,

Так как и направлены в одну сторону, то dIмикро=jdl. Вклад в циркуляцию намагниченность дадут только те токи, которые нанизаны как бусы на нитку. Тогда окончательно можно написать:

С учетом последнего соотношения теорема о циркуляции вектора магнитной индукции принимает вид: ,

, - теорема о циркуляции магнитного поля

Циркуляция вектора напряженности магнитного поля вдоль произвольного замкнутого конура равна результирующему макро току через поверхность ограниченного этим контуром. Для изотропных магнетиков связь намагниченности j и напряженности Н магнитного поля. Т.е. χ—безразмерная величина – магнитная восприимчивость среды или вещества. Подставим в выражении для : , , ,

Если среда не изотропная, то μ становиться тензором:

В электричестве векторы описывают поле:

- является истинным, он порождается и связанный поляризованными зарядами.

- вспомогательный вектор

В магнетизме:

- истинный – порождается микро и макро токами

- только макроскопическими токами



Природа вектора и и и одинаковы.

 



<== предыдущая лекция | следующая лекция ==>
Магнитное поле в веществе. Намагниченность. | Типы магнетиков. Диа- и парамагнетики.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 2.172 сек.