русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Репликация


Дата добавления: 2015-08-31; просмотров: 3065; Нарушение авторских прав


Матричные синтезы

 

Удвоение молекулы ДНК – репликация. В результате этого и последующего деления дочерние клетки наследуют геном родителей, в котором полный набор генов, или инструкция о строении РНК и всех белков организма. Это первый поток передачи информации.

Второй поток – происходит в процессе жизнедеятельности клетки. Происходит считывание, или транскрипция, генов в форме полинуклеотидных последовательностей мРНК и использование их как матрица для синтеза соответствующих белков. Т.е. происходит перевод, или трансляция информации с мРНК на язык аминокислот. Поток информации от ДНК через РНК на белок – центральная догма биологии.

Исправление ошибок в структуре ДНК, возникающих под действием внешних и внутренних факторов, осуществляет еще один матричный синтез – репарация.

Итак, к матричным синтезам относят репликацию, транскрипцию, трансляцию и репарацию.

 

Репликация

Хромосома содержит одну непрерывную двухцепочечную молекулу ДНК. При репликации каждая цепь родительской ДНК служит матрицей для синтеза новой комплементарной цепи. Вновь образованная двойная спираль имеет одну исходную и одну вновь синтезируемую цепь. Такой механизм носит название полуконсервативная репликация.

Репликация состоит из стадий:

Инициация – образование репликативной вилки

Элонгация – синтез новых цепей

Исключение праймеров

Терминация

 

Синтез ДНК происходит в S-фазу. Инициацию репликации регулируют специфические сигнальные белки – факторы роста. Они связываются с рецепторами мембран, передающих сигнал, побуждающий клетку к началу репликации. Синтез новых одноцепочечных молекул ДНК может произойти только при расхождении родительских цепей. В определенном сайте (точка начала репликации)происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях. Образование репликативной вилки:



ДНК-топоизомеразы (I, II, III) обладают нуклеазной активностью. ДНК-топоизомераза I разрывает фосфоэфирную связь в одной из из цепей и ковалентно присоединяется к 5’-концу в точке разрыва.По окончании формирования репликативной вилки фермент ликвидирует разрыв и отделяется от ДНК. Разрыв водородных связей в двухцепочечной ДНК осуществляет ДНК-хеликаза. Она использует АТФ для расплетения двойной спирали. В результате происходит раскручивание участков суперспирализованной молекулы. В поддержании этого участка в раскрученном состоянии участвуют SSВ-белки. Кготорые связываются с одноцепочечной нитью. Эти белки не закрывают азотистые основания, но не дают комплементарное скручивание и образование шпилек. Они обладают большим сродством к одноцепочечным участкам.

 

Репликация осуществляется ДНК-полимеразами. Субстратами и источниками энергии служат дезоксирибонуклеозидфосфаты дАТФ, дГТФ, дЦТФ и дТТФ. Для их активации необходимы ионы магния, т.к. они нейтрализуют отрицательный заряд и повышают их реакционную способность. Синтез происходит в направлении 5’ → 3’ растущей цепи, т.е. очередной нуклеотид присоединяется к свободному 3’-ОН- концу предшествующего нуклеотида. Синтезируемая цепь всегда антипараллельна матричной цепи. В ходе репликации образуются 2 дочерние цепи, являющиеся копиями матричных цепей.

Существует 5 ДНК-полимераз (α, β, γ, δ, ε). Они различаются по числу суъединиц, молекулярной массе и функциональному назначению. ДНК-полимеразы α, β, δ, ε участвуют в синтезе ДНК в ядре, а γ в репликации митохондриальной ДНК.

Репликацию инициирует ДНК-полимераза α, т.к. коплементарна определенному сайту одноцепочечной ДНК. Она синтезирует небольшой фрагмент РНК – праймер , состоящий из 8-10 рибонуклеотидов. Далее она синтезирует олигонуклеотид их ≈ 60 нуклеотидных остатков. Первые 8-10 представлены рибонуклеотидами, остальные – дезоксирибонуклеотидами.

Этот олигонуклеотид, образующий небольшой двухцепочечный фрагмент с матрицей позволяет присоединиться ДНК-полимеразе δ и продолжить синтез новой цепи в направлении от 5’- к 3’- концу по ходу раскручивания репликативной вилки. В каждой репликативной вилке идет одновременно синтез двух новых цепей. Лишь для одной цепи совпадает движение с репликативной вилкой – это лидирующая цепь. Для другой цепи синтез осуществляется ДНК-полимеразой α и ε в направлении 5’- к 3’- концу, но против движения репликативной вилки. Поэтому вторая цепь синтезируется прерывисто, короткими фрагментами (фрагменты Оказаки). Эту цепь называют отстающей. Каждый фрагмент ≈ 100 нуклеотидови содержит праймер. Праймеры удаляет ДНК-полимераза β, постепенно отщепляя по одному рибонуклеотиду и присоединяет к ОН-группе на 3’- конце дезоксирибонуклеотиды. Далее ДНК-лигаза закрывает брешь и образуется непрерывная цепь ДНК.

 

 

 

Инициация ДНК происходит в нескольких сайтах хромосомы. Их называют сайтами репликации, или ориджинами.Последовательность ДНК, ограниченную двумя ориджинами, называют единицей репликации, или репликоном. Две репликативные вилки двигаются в противоположных направлениях до тех пор пока не встретяться.

 

После завершения репликации происходит метилирование нуклеотидных остатков вновь образованных цепей. Метильные группы присоединяются ко всем остаткам аденина в последовательности GATCс образованием

N6-метиладенин или возможно метилирование цитозина в последовательностиGCс образованием N5-метилцитозина. Количество метилированных оснований равно ≈ 1-8%. Модификация происходит при участии ферментов. Использующих метильные группы S-аденозилметионина (SАМ). Присоединение метильных групп к остаткам аденина и цитозина не нарушает комплементарности цепей.

 

Наличие метильных групп в цепях ДНК необходимо для формирования структуры хромосом и для регуляции транскрипции генов.

В течение непродолжительного времени в молекуле ДНК последовательности –GATC-метилированы по аденину только в матричной цепи. Это различие используется ферментами репарации для исправления ошибок репликации.

 

На каждом конце хромосомы присутствует специфическая нуклеотидная последовательность. Она представлена многочисленными повторами (сотни или тысячи раз) олигонуклеотидов –GGGTTA-.Это сочетание называют теломерной последовательностью, или теломерной ДНК. Наличие теломер необходимо для завершения репликации концевых информативных последовательностей хромосом, т.е. для сохранения генетической информации. После завершения репликации хромосомы 5’-конца дочерних цепей ДНК недостроены, т.к. после удаления праймеров эти фрагменты оказываются недореплицированными, потому что ДНК-полимераза β, ответственная за заполнение бреши не может вести синтез цепи ДНК от

3’- к 5’- концу. Таким образом в ходе каждого цикла репликации 5’- концы синтезированных цепей укорачиваются. Эти потери не представляют опасности для генетической информации, т.к. укорочение идет за счет теломер.

 

Т.о. с каждым клеточным делением ДНК хромосом будут последовательно укорачиваться. Укорочении теломер в большинстве клеток по мере их старения – важный фактор, определяющий продолжительность жизни организма.

Однако в эмбриональных и других быстро делящихся клетках потери концов хромосом недопустимы. В клетках имеется фермент теломераза(нуклеотидилтрансфераза), которая восстанавливает недореплецированные

5’-концы. В ферменте в качестве простетической группы присутствует РНК. Она находится в активном центре фермента и служит матрицей при синтезе теломерных повторов хромосом, т.е. постепенно наращивает гексануклеотид –GGGTTA-.В большинстве клеток она не активна. Однако небольшая ее активность обнаруживается в лимфоцитах, стволовых клетках костного мозга. клетках эпителия, эпидермисе кожи.

 



<== предыдущая лекция | следующая лекция ==>
Задача №6 | Клеточный цикл и его регуляция


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.165 сек.